Strings

Håkon Enger

Large and small strings

Small light strings: F-strings

Large and small strings

- Small light strings: F-strings
- Small heavy strings: D-strings

Large and small strings

- Small light strings: F-strings
- Small heavy strings: D-strings
- Big heavy strings: Cosmic strings

Small light strings

The foundation of (super)string theory:

Elementary particles are strings, not points

What is an elementary particle?

Small light strings

The foundation of (super)string theory:

Elementary particles are strings, not points

What is an elementary particle?

(Sometimes called F(undamental)-string)

Why not?

 We can't observe elementary particles in enough detail to see what shape they have...

Why?

- Mathematical problems with quantum physics:
 - Gravity not consistent with renormalization
 - Thus, there is no theory describing all four fundamental forces of nature

- Observational problems:
 - Galaxies seem to rotate too fast

Why?

- Observational problems:
 - Galaxies seem to rotate too fast
 - Observation of the CMB suggests a mysterious vacuum energy filling empty space

Why?

- Observational problems:
 - Galaxies seem to rotate too fast
 - Observation of the CMB suggests a mysterious vacuum energy filling empty space
 - Normally solved by introducing "dark matter/energy", but what is it?

String theory

Two kinds of strings: open and closed

Open strings give ut the Standard Model of particle physics (matter + electromagnetic + nuclear forces)

String theory

Two kinds of strings: open and closed

Open strings give ut the Standard Model of particle physics (matter + electromagnetic + nuclear forces)

Closed strings are gravitons – carriers of gravitation.

String theory

Two kinds of strings: open and closed

Open strings give ut the Standard Model of particle physics (matter + electromagnetic + nuclear forces)

Closed strings are *gravitons* – carriers of gravitation. String theory contains *both* gravity and Standard Model forces – it's the (so far) only

Theory of everything!

Extra dimensions

Quantum field theory and supersymmetry restricts the theory mathematically

Space must have exactly 9 dimensions!

(Including time, we get 9 + 1 = 10 dimensions all together.)

Extra dimensions

The extra dimensions are "curled up", possibly in a very complicated way.

D-branes and D-strings

- "Discovered" (i.e., mathematically) in the 90s
- Massive objects extended in one or more dimensions

D-branes and D-strings

- "Discovered" (i.e., mathematically) in the 90s
- Massive objects extended in one or more dimensions
- Open strings attach to D-branes.
- Closed strings move in all 9 dimensions.

D-branes are essential to understanting non-perturbative aspects of string theory.

D-branes and D-strings

- A one-dimensional D-brane is called a D-string.
- A D-string is heavier than a F-string.
- Probably the D-strings (and branes) will be curled up in the extra dimensions, and look like (heavy) particles to us.

String theory proven?

NewScientist.com SEARCH		- <u>Zine</u> ibe to Magazine her Service
08 May 2005 HOME NEWS EXPLORE BY SUBJECT LAST WORD SUBSCRIBE SEARCH ARCHIVE RSS JOBS		
EXPLORE BY SUBJECT	FUNDAMENTALS	A set and a set of the
ALL SUBJECTS Space Health Earth Fundamentals Being Human	The first evidence for string theory? 18 December 2004 From New Scientist Print Edition. <u>Subscribe</u> and get 4 free issues. Marcus Chown	
Info-Tech Life Mech-Tech Opinion Sex and Cloning New Scientist Special Reports	IF YOU consider them separately, these two observations are hardly going to set the scientific world on fire. But together they add up to a spectacular possibility. In a tiny region of sky, astronomers have seen a dozen galaxies that appear as a curious sequence of double images. The have also observed a quasar whose brightness oscillates in an unexpected way. What could cause these odd phenomena? The only explanation that covers both is pretty mind-bending: "superstrings" of pure energy that	More Fundamentals Stories Lightning: Thunderbolts from space Superconductors have no need to be negative One law rules dedicated followers of fashion Fred Hoyle: A life in science by Simon Mitton and Fred Hoyle's Universe, by Jane Gregory
PRINT EDITION	can stretch millions of light years across the universe. Is	The theory of eventthing: Are we nearly there:

Spontaneous symmetry breaking

- Complex scalar \u00f3
- Potential

$$V \sim (|\phi|^2 - \eta^2)^2$$

(η const)

 Symmetry breaking: ground state not rotationally symmetric

Spontaneous symmetry breaking

- Complex scalar \u00f3
- Potential

$$V \sim (|\phi|^2 - \eta^2)^2$$

(η const)

 Symmetry breaking: ground state not rotationally symmetric

- Effective potential temperature dependent
- High T: Symmetric ground state $\phi = 0$
- Symmetry breaking at critical T

Strings - p.14/25

Strings - p.14/25

Strings - p.14/25

Strings and mass distribution

- Problem: How were the galaxies formed?
- Need fluctuations of mass density to start galaxy formation.

Strings and mass distribution

- Problem: How were the galaxies formed?
- Need fluctuations of mass density to start galaxy formation.
- Gravitational effect of strings $\sim G\mu \sim 10^{-6}$ (GUT-scale strings).
- Density fluctuations with $\delta \rho / \rho \sim 10^{-6}$ might explain early galaxy formation.

Strings and mass distribution

- Problem: How were the galaxies formed?
- Need fluctuations of mass density to start galaxy formation.
- Gravitational effect of strings ~ $G\mu \sim 10^{-6}$ (GUT-scale strings).
- Density fluctuations with $\delta \rho / \rho \sim 10^{-6}$ might explain early galaxy formation.
- Alternative: inflation...

Cosmic strings and CMB

The WMAP satellite has measured the fluctuations in the cosmic microwave background radiation (CMB). Looks bad [hep-th/0505050]

String theory and cosmic strings

- Cosmic strings may still exists
- F- and D-strings from before inflation may be big now

Brane-world models

- Our universe is a D3 brane
- "Large" extra dimensions: $\mu \mapsto \mu/V$
- "Warp factor": $\mu \mapsto e^{2A}\mu$

Brane-world models

- Our universe is a D3 brane
- "Large" extra dimensions: $\mu \mapsto \mu/V$
- "Warp factor": $\mu \mapsto e^{2A}\mu$

Inflation:

- KLMT model
- $D3/\overline{D3}$ pairs collide
- Annihilation produces D-strings

Observations

Lensing effect of string

- Can compute α from D_s and D_{ls} .

Lensing effect of string

• Can compute α from D_s and D_{ls} .

CSL-1

- "CSL-1: a chance projection effect or serendipitous discovery of a gravitational lens induced by a cosmic string?"
- M. Sazhin et. al., Mon. Not. Roy. Astron. Soc. 343 (2003) 353 [astro-ph/0302547]

Edges in CMB

- Discontinuity in redshift at string \Rightarrow "edge"
- A. S. Lo, E. L. Wright, [astro-ph/0503120], looked for edges in WMAP data
- No clear evidence of strings

Edges in CMB

- Discontinuity in redshift at string \Rightarrow "edge"
- A. S. Lo, E. L. Wright, [astro-ph/0503120], looked for edges in WMAP data
- No clear evidence of strings
- **•** Edge at CSL-1 with " 2σ " significance

The double quasar

Anomalous fluctuations in observations of Q0957+561 A,B: smoking gun of a cosmic string?

R. Schild¹, I. S. Masnyak², B. I. Hnatyk², and V. I. Zhdanov²

¹ Harvard-Smithsonian Center for Astrophysics, 19, 60 Garden Street, Cambridge, MA 02138, U.S.A.

² Astronomical Observatory of Kyiv Taras Shevchenko National University, 3 Observatorna str., 04053 Kyiv, Ukraine

the date of receipt and acceptance should be inserted later

Abstract. We report the detection of anomalous brightness fluctuations in the multiple image Q0957 + 561 A,B gravitational lens system, and consider whether such anomalies have a plausible interpretation within the framework of cosmic string theory. We study a simple model of gravitational lensing by an asymmetric rotating string. An explicit form of the lens equation is obtained and approximate relations for magnification are derived. We show that such a model with typical parameters of the GUT string can quantitatively reproduce the observed pattern of brightness fluctuations. On the other hand explanation involving a binary star system as an alternative cause requires an unacceptably large massive object at a small distance. We also discuss possible observational manifestations of cosmic strings within our lens model.

Key words. cosmology: miscellaneous – gravitational lensing – quasars: individual: Q0957+561 – dark matter – elementary particles

Astron.Astrophys. 422 (2004) 477-482 [astro-ph/0406434]

511 keV photons

- The INTEGRAL satellite has observed radiation of photons with 511 keV from the centre of the galaxy
- presumed source: electron-positron annihilation
- F. Ferrer, T. Vachaspati, [astro-ph/0505063]:
- Superconducting cosmic strings may produce positrons

Summary

- String theory assumes elementary particles are tiny strings
- The theory implies existence of D-branes and D-strings
- Cosmic strings appear from spontaneous symmetry breaking in early universe
- Huge F- and D-strings may be created by inflation
- No definitine observations (yet?), but some claims...

Popular references on string theory:

- Brian Greene: The Elegant Universe TV series, see: http://www.pbs.org/wgbh/nova/elegant/
- http://superstringtheory.com/