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Introduction

» Neuronal network parameters:

— network architecture
—dynamics of synapses and single cells

» Biologically realistic systems:

— high-dimensional parameter space
— constrained only to some extent

» Genetic algorithms provide a potential solution to this problem
» Questions:

—To what extent can network parameters be determined by fitting
the population statistics of neural activity?

—What's a good fit strategy?
—What'’s the precision of the fit result?

—How important are individual parameters for the functional per-
formance of the model?

Balanced Random Network Model

0, Tm

Network model: Multi-population random network with fixed in-degrees (Brunel, 2000)
Populations E (excitatory): LIF neurons (see B), size Ng
| (inhibitory): LIF neurons (see B), size N,
X (external): Poisson point processes with rate nuy , Size Kg(Ng + V)
Connectivity EE, IE: Random convergent Kg — 1, excitatory synapses
El, II: Random convergent K| — 1, inhibitory synapses (see C)

EX, IX: Non-overlapping Kg — 1, excitatory synapses (see C)

Parameters Population sizes N, in-degrees K (g |y = eN¢g 3, connectivity e,

relative external drive n

Neuron model: Leaky integrate-and-fire (LIF) neuron (Lapicque, 1907; Tuckwell, 1988)

Spike emission Neuron k € [1, Ng + V|| fires at all times {¢;, |Vi(t;,) = 0, ji € N}
Subthreshold  dy- | 7V}, = =V} + RIL(t) ifVj.: t & (L., + Ter] Total synaptic input current
namics Ip(t) = > > kit — t;,) (see C)

Reset + refractori- | Vi(t) = Vieset 1 Vi 0 t € (5,1, + Tref]
ness

Parameters Membrane time constant r,,, membrane resistance R, spike threshold 4,

reset potential Vieset, refractory period 7y

Synapse model: Static current synapse with a-function shaped PSC

Juers te s >0
PSC kernel in(t+d) = KICTs 26
0 else
( J if synapse kl exists and is excitatory
Synaptic weights Ju = —gJ if synapse kl exists and is inhibitory
\0 else
Parameters Excitatory synaptic weight  J, relative strength ¢ of inhibition
synaptic time constant 75, synaptic delay d

D Spike-train analysis

Spike trains si(t) =22 0t —15)

Population aver- | ro = <3k<t)>k,t
aged firing rate

Coefficient of vari-| CV = <\/<Tj2k> - <Tyk>jk/ <Tjk>jk>
ation of inter-spike Tk
interval

with Tj, = 1,41 — 1,

Population  aver-| x(w) = C(w)/P(w)

aged  spike-train | with cross-spectrum C(w) = g [<3k(t>3l(t +7 )>k,lyék,t] (w)

coherence
and power-spectrum P(w) = §; [(sk(t)sk(t + 7)) WW (w)
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Description of the model and the spike-train analysis. Blue-marked parameters are varied during
the optimisation.

200 N

4.0} 100 4.0 1.05 4.0 100Z

a

3.5 10 N 3.5 0.90 3.5 40 ©

3.0 50 T 30 0.75 3.0 20 @

= 2.5 10 v 525 0.6035 =25 10 ©

2.0 © 2.0 0.45 2.0 4 S

1.5 5 15 0.30 1.5 O

1.0 i 1.0 0.15 1.0 1 3

@)

0555710 15 20 25  ° 0555770 15 20 25 0:00 0555710 15 20 25 0
g g g

Average rate, CV and total coherence for the 2-dimensional (g,n)
parameter space, other parameters kept constant. x marks reference
point g =8, n = 1.25, Jpsp = 0.1MV, 6 = 20mV, 75 = 0.01ms.

Variability of measures

» Sources of variability in measured states:

—due to recording from only a selection of neurons in the network
—due to statistical fluctuations in network structure

The statistical fluctuations may be studied by varying the seed of the
pseudorandom number generator used to construct the network.
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Alternative cost functions

The cost function used in the optimization algorithm should be di-
mensionless. There are two natural ways of achieving this:

— Scaling by target value: f(p) = Z@'(Sz'(P) - ti)Z/t?
— Scaling by natural target variability: f(p) = 3_.(s;(p) — t;)*/At?

(p: parameter vector, s;(p): measured state, ¢;: target state, At;:
standard deviation of target state.)
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L ocal cost landscapes

» Observation: shallow valley near minimum.

I
o O

|_I
o
Cost scaled by target

N B
o O o

Cost scaled by exp. error

N
=

i

N

[
=

—Indicates Insensitivity to certain parameter combinations.

(Gutenkunst et al., 2007)

» EXxploration of full cost landscape not practical for high-dimensional
parameter spaces.

» Instead, find the local curvature of the cost landscape by studying
the Hessian H;, = 9°f /0p;0p;, of the cost function.
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Ellipses show isocontour lines of quadratic approximation of cost
function found by analysis of the Hessian (Gutenkunst et al., 2007).

Because of the intrinsic statistical fluctuations of the measured quan-
tities, the data used to calculate the Hessian is noisy. The noise is
amplified when calculating derivatives, since this involves subtracting
two data points of equal magnitude. In order to obtain the Hessian
used for the above plot, we averaged over 200 different network real-
Izations In each point.

Acknowledgements

We acknowledge support by the NOTUR and
eScience programs of the Research Council of
Norway. All network simulations were carried
out with the neural simulation tool NEST (see
http://www.nest-initiative.org).

References

Genetic algorithm

» Evaluating the cost function is very time expensive.

» Must use a minimal number of individuals per generation and a
strategy which converges quickly to the minimum.

We use a genetic algorithm with 20 individuals in each generation,
and generational replacement except for an elitist rule where the best
Individual from the previous generation is kept. We employ roulette
wheel selection with linear ranking and crossover mating. The muta-
tion probability is 0.01 per bit and the selective pressure is 2.0.

» Results from repeated searches using different initial generation:

2-dimensional parameter space
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Figures show the best result from 50 optimizations using a genetic
algorithm.

b-dimensional parameter space

Results and correlations:
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Variations in measured quantities:
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Blue: Target variability; Green: Best results from genetic algorithm
using cost function scaled by target value; Red: Best results using
cost function scaled by experimental error.

» Comparing network activity from “best” and “worst” result of opti-
mization:

Best result from GA Worst result from GA
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Conclusion

» Intrinsic variability in network state
= Inevitable variability in fitted parameters
» Different observables have different precision

» Cost landscape in vicinity of minima often shallow along certain
directions, i.e. similar performance for different parameter combi-
nations

» Choice of cost function affects the accuracy of the genetic algo-
rithm
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