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Chapter 1

Introduction

1.1 Motivation

Geometry is naturally related to string theory since the low energy limit
of strings contains Einstein’s theory of general relativity (GR), which is a
theory for describing the geometry of space and time. One interesting thing
about this relation is that GR, and indeed the geometry of space-time itself,
arises as a derived concept of string theory. String theory can say more about
geometry than GR alone, possibly as a consequence of this.

There is hope that string theory can also teach us more about other,
more abstract, mathematical objects. A relatively recent discovery of string
theory, made in the 1990s, are the D-branes. These describe in the low-
energy limit a Yang-Mills (YM) theory on the part of space-time they cover.
A YM theory is a geometrical description of forces such as those appearing
in the Standard Model of particle physics. The full mathematical descrip-
tion of a YM theory is a vector bundle, or more generally a sheaf, objects
that mathematicians are working to study and classify. As developments in
string theory has given valuable input in the field of algebraic geometry, and
vica versa, a better understanding of the connection between D-branes and
geometry would be helpful in both physics and mathematics.

This thesis seeks to explore the relationship between geometry and D-
branes in string theory, in three papers treating some problems where the
connection between these worlds is visible. The relationship takes different
forms. The first paper concerns a relation found through string theory be-
tween the geometry of space-time in a gravitational theory and YM theory,
the gauge/gravity correspondence. The second paper relates a mathematical
stability condition on sheaves and vector bundles to a physical condition of
stability of D-branes. The third paper explores the relation of the world-
sheet description of string theory, conformal field theory, and the algebraic
geometry of sheaves.

The thesis consists of two parts, this introductory text and the three
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4 Chapter 1. Introduction

papers. The first part will provide a short introduction to string theory and
background for the papers that follow. The general introduction in this first
chapter is based mainly on the textbooks [1, 2] and the lecture notes [3, 4].
The next chapters will serve as an introduction to each of the papers in the
second part of the thesis. In the appendix, some mathematical concepts,
from geometry and algebraic geometry, have been collected for reference.

1.2 History

Modern physics is the name used for the areas of physics that first appeared
at the beginning of the 20th century. The two areas of physics covered by
this term are Einstein’s theory of general relativity (GR), and quantum field
theory (QFT). Both have been phenomenally successful in their explanation
and prediction of observed phenomena, and many of the tools used daily life
in the western world, such as GPS navigation equipment and mobile phones,
use technology that would not have been possible without understanding
these theories. In fact, with the advantage of hindsight, the prevailing belief
of the 19th century that the fundamental physical laws were well understood,
and the future of physics was in precision experiments to determine the
fundamental natural constants, seems almost absurdly naïve.

The theories of modern physics have also been developed to the point
where they lend themselves well to precision experiments. Famous achieve-
ments of these theories include the calculation of the orbit of Mercury to
more than 8 decimal places and the determination of the fine structure con-
stant α to more than 12 decimal places. Even the age of the cosmos is
believed to be known within a few percent. All this could easily lead one
to believe that we know what there is to know about fundamental laws of
nature.

But there are problems lurking within the dark unexplored corners of
modern physics. QFT has intrinsic problems with divergences that appear
in the perturbation theory used to make calculations. These divergences are
possible to work around as long as the theory is renormalisable, but they
still make it difficult to rigorously define most quantum field theories in a
mathematical language. Also in GR there are divergences, appearing as the
black hole solutions of the field equations for a point mass.

A fundamental problem with the view that the laws of nature are de-
scribed fundamentally by GR and QFT is that GR as formulated is not a
renormalisable theory. This means that a QFT for gravitation must have a
different fundamental form than the theory written down by Einstein. At-
tempts to formulate a theory of gravity compatible with quantum physics
have generally not produced satisfactory results, with the exception of one
theory which appeared surprisingly from an attempt to solve a different
problem.
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Before the modern QFT description of the strong force, Quantum Chro-
modynamics (QCD), was accepted, one proposed theory was that the strong
force was mediated by strings with a constant tension. This theory had sev-
eral problems that made it inferior to the theory of QCD, which eventually
prevailed. However, in 1974 Scherk and Schwarz [5] showed that string theory
had the unexpected power of giving a quantum theory of gravitation. There
were still problems, in particular the fact that the appearance of tachyons
in the string theory spectrum indicates that the (bosonic) string theory is
unstable, but these were finally solved in 1984 when Green and Schwarz [6, 7]
proved that the superstring theory introduced seven years earlier by Gliozzi,
Scherk and Olive [8] consistently removed the tachyons from the spectrum.
Thus a combination of QFT and GR without the intrinsic problems encoun-
tered before was finally available.

So far, string theory has not been developed to the point where it is
completely trustworthy as a fundamental description of the laws of nature.
Instead, the theory has again surprisingly proved itself to be useful in dif-
ferent areas from where it was introduced. A mathematical duality known
as the gauge/gravity correspondence between the open string sector which
reduces at low energy to Yang-Mills theory, potentially able to describe the
standard model of particle physics, and the closed string sector which re-
duces to GR, gives promises towards solving the intrinsic problems with
divergences in QFT by doing calculations in GR. In the field of mathemat-
ics, input from string theory has resulted in a new way of looking at old
problems in (algebraic) geometry through the mirror symmetry hypothesis.

1.3 String theory

1.3.1 Introduction

The basic premise of string theory (ST) is the idea of extended fundamen-
tal objects. In traditional physics, both classical and quantum, the fun-
damental building blocks have been assumed to be point particles—zero
dimensional objects. ST introduces the concept of the fundamental one di-
mensional string. In a world governed by the laws of classical physics, the
sub-microscopic structure of the building blocks would be of little impor-
tance on larger length scales. Perhaps surprisingly, it turns out that the
laws of quantum physics constrain heavily the allowed properties of strings
and even the space they propagate in.

Another basic assumption usually made in ST is the existence of su-
persymmetry. This condition turns out to be sufficient in order to state a
consistent quantum theory of strings, but it is not known whether it is a nec-
essary condition. So far, no fully consistent theory of non-supersymmetric
strings has been formulated.
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1.3.2 The string action

In order to formulate a theory for strings, an action must be found from
which their equations of motion are derived, and from which a quantum
partition function is found. The principle used to formulate such an action
is that of extending the action of a point particle in a minimal way. This
leads to the Nambu-Goto action: [9, 10]

SNG = − 1

2πα′

∫
dτdσ

√
−det γ, γab = ∂aX

µ∂bXµ. (1.1)

The numerical value of this action is nothing but the area in space-time of
the surface, called the worldsheet, covered by the string as it moves through
time. It is a natural analogue of the action for a point particle,

∫
ds, which

is the length of the worldline of the particle in space-time.
The Nambu-Goto action is non-trivial to quantise. Quantising it would

be easier if the coordinates of the string appeared only as second order in the
action. An action with this property may be found, and it is the Polyakov
action, [11, 12]

SP = − 1

4πα′

∫
dτdσ

√
−det ggab∂aX

µ∂bXµ. (1.2)

The equation of motion for the tensorial metric-like field hµν from this action
is

gab
√
−det g = γab

√
det γ, (1.3)

which determines the field of to a scalar only. The operation of multiplying
the metric with a scalar is known as a Weyl rescaling.

Weyl: gab(x) 7→ Ω(x)gab(x) (1.4)

Since this metric is an auxiliary field which gives the Nambu-Goto action
when integrated out, the physics can not depend on the value of this scalar.
As expected, the Polyakov action is Weyl invariant. It will turn out that
Weyl symmetry is in general anomalous in the quantum theory, and this is
the main reason for the constraints imposed on the strings and on space-time.

The action (1.2) describes strings moving in a D-dimensional space-time.
Nevertheless, it looks like a field theory for the D fields Xµ(τ, σ) living on
the 1 + 1-dimensional worldsheet described by coordinates σ and τ . (This
is not unique for strings—in the same manner one might describe a point
particle with a 0 + 1-dimensional field theory.) The field theory on this two-
dimensional space-time described by this action is known as a non-linear
sigma model. Such models may also be interesting to study in their own
rights. The study of string theory thus interacts with the field of two-
dimensional physics.
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1.3.3 Conformal field theory

The Weyl symmetry of the Polyakov action (1.2) together with its invariance
under general coordinate transformations makes it describe a 2-dimensional
conformal field theory (CFT). A conformal transformation is an automor-
phism of a manifold which preserves the metric up to a scalar, i.e. induces
a Weyl rescaling. An equivalent definition of a conformal transformation is
an automorphism that preserves angles. A local conformal transformation
is a transformation satisfying eq. (1.4) locally. For an infinitesimal transfor-
mation x′µ = xµ + εµ, and an initial flat metric ηµν , the constraint in two
dimensions with coordinates x and y becomes,

∂x′

∂x
=
∂y′

∂y

∂x′

∂y
= −∂y

′

∂x
(1.5)

This is exactly the Cauchy-Riemann conditions for the new coordinate f(z) =
x′ + iy′ to be an analytic function of the old coordinate z = x + iy, so in
two dimensions a conformal transformation is the same as a holomorphic
transformation. This means that using complex coordinates is natural in
describing a 2-dimensional CFT.

The following special class of fields will turn out to be important in the
study of a CFT: A primary field is a field φ which transforms according to

φ(z, z̄) 7→
(
∂f

∂z

)h(∂f̄
∂z̄

)h̄
φ(f(z), f̄ (z̄)) (1.6)

under the conformal transformation z 7→ f(z). Such a field is said to have
conformal weight (h, h̄). Since the transformation factorises into an analytic
and an anti-analytic part, it is practical to view the transformations z 7→ f(z)
and z̄ 7→ f̄(z̄) as independent of each other.

Conformal invariance of a quantum field theory requires that the corre-
lation functions are conformally invariant. Since coordinate transformations
are generated by the energy-momentum tensor T µν , this becomes the re-
quirement that for any primary field φ,1

T (z)φ(w) =
h

(z − w)2
φ(w, w̄) +

1

z − w∂wφ(w, w̄) + . . . , (1.7)

where the dots represent terms regular as z → w, and the equation is an
example of an operator product expansion, which is to be understood as an
identity only inside correlation functions. The energy momentum tensor it-
self turns out not to be a primary field in general, instead having an operator
product with itself on the form

T (z)T (w) =
c

2(z − w)4
+

2

(z − w)2
T (w) +

1

z − w∂wT (w) + . . . . (1.8)

The constant c is the central charge of the CFT.
1As is common in conformal field theory, the tensor component T zz(z) is called just

T (z) and the component T z̄z̄(z̄) will be called T̄ (z̄).
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1.3.4 Supersymmetry

There exists a natural supersymmetrisation of the Polyakov action (1.2), by
adding terms for the fermions to the action. [3]

S =
1

4π

∫
d2σ

(
1

α′
∂Xµ∂̄Xµ + ψµ∂̄ψµ + ψ̃µ∂ψ̃µ

)
, (1.9)

where ψ, ψ̃ are fermion fields. There may be several reasons to introduce
supersymmetry. First, we need to include fermions somehow in order to make
a realistic theory of nature. They may be added in a non-supersymmetric
way, of course, but extending the conformal symmetry of the non-linear
sigma model to a superconformal one may be argued to be a “minimal”
enlargement of the theory.

Perhaps more importantly, the tachyon of the bosonic string is a serious
problem for its usefulness. It turns out that these exists a consistent intro-
duction of supersymmetry eliminates the tachyon, by projecting out states
with odd fermion number. This is called the Gliozzi-Scherk-Olive (GSO)
projection and ensures spacetime supersymmetry.

1.3.5 Closed strings

The equation of motion following from (1.2) is the Laplacian (wave equation)
on the space with metric gµν . If the topology of the worldsheet is that of a
torus, or that of flat affine space, we may use the symmetries of the action
to transform the metric to the form gµν = ηµν . (In other cases, we may do
this only locally.) The equations of motion then become

(∂2
σ − ∂2

τ )Xµ = 0, (1.10)

with solutions Xµ(τ, σ) = Xµ
R(τ − σ) +Xµ

L(τ + σ),

Xµ
R(σ−) =

1

2
xµ +

√
α′

2
αµ0σ

− + i

√
α′

2

∑

n6=0

1

n
αµne

−2inσ− , (1.11)

Xµ
L(σ+) =

1

2
xµ +

√
α′

2
α̃µ0σ

+ + i

√
α′

2

∑

n6=0

1

n
α̃µne

−2inσ+
, (1.12)

We identify the coefficient of τ as being proportional to the (centre of mass)

momentum, pµ =
√

1
2α′ (α

µ
0 + α̃µ0 ). We will here impose periodic boundary

conditions in σ, appropriate for describing a closed string. The condition in
flat space becomes Xµ(σ, τ) = Xµ(σ+ 2π, τ), giving αµ0 = α̃µ0 . If we assume
that (at least) one dimension, say X25, is periodic (we will say that it is
compactified on a circle) with period 2πR, we can have

αµ0 − α̃µ0 =

√
2

α′
wR, (1.13)
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where w is an integer we identify as the winding number of the string around
the periodic dimension.

For the superstring action, eq. (1.9), we need boundary conditions for
the fermions as well. In this case, the boundary conditions needs only to be
periodic up to a sign in order to be consistent with the equations of motion.
Periodic conditions are known as the Ramond (R) sector, while anti-periodic
conditions are known as the Neveu-Schwarz (NS) sector,

R: ψµ(σ, τ) = ψµ(σ + 2π, τ), (1.14)
NS: ψµ(σ, τ) = −ψµ(σ + 2π, τ). (1.15)

The same choice may be made for the right-moving ψ̃ field, leading to four
possibilities all in all, R–R, R–NS, NS–R, and NS–NS. The GSO projection
removing the tachyon from the spectrum may be made in two different ways
in the R sector, and this gives two different consisting closed superstring
theories, called type IIA and type IIB.

1.3.6 Open strings

In the previous section we applied periodic boundary conditions to the equa-
tions of motion for a string, and got a theory for a closed string. We found
that in this case, the left and right moving oscillations were independent of
each other. There are two other possibilities for boundary conditions that
we will study, the Neumann and Dirichlet conditions. Both these result in
open strings. In the Neumann case, the ends of the string are free to move,
and in the Dirichlet case the endpoints are fixed on a subspace (submanifold)
of space-time. We will see that in the open case, the left and right moving
oscillations are not independent.

For open strings, it is customary to let σ run from 0 to π. The Neumann
boundary conditions read X ′µ(τ, 0) = X ′µ(τ, π) = 0. In this case the general
solution to the equation of motion (1.10) is

Xµ(τ, σ) = xµ + 2α′pµτ + i
√

2α′
∑

n6=0

1

n
αµne

−inτ cos(nσ). (1.16)

The other possibility we should consider is Dirichlet boundary conditions,
Ẋµ(τ, 0) = Ẋµ(τ, π) = 0. This means that the endpoints of the string is
fixed. The solution becomes

Xµ(τ, σ) = xµ0 +
1

π
xµπσ + i

√
2α′
∑

n6=0

1

n
αµne

−inτ sin(nσ). (1.17)

The string is now stretched between the points xµ0 and xµπ. It is also possible
to combine Neumann boundary conditions in some directions and Dirichlet
conditions in other directions. Immediately, it seems that the Dirichlet con-
dition doesn’t make sense (e.g., it’s not Lorentz invariant) unless there is
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some object to which the string is connected. This object is the D-brane,
which will be the main topic of this thesis.

For the superstring action, there are again two possible choices consistent
with the equations of motion, Ramond and Neveu-Schwarz,

R: ψµ(0, τ) = ψ̃µ(0, τ) ψµ(π, τ) = ψ̃µ(π, τ) (1.18)

NS: ψµ(0, τ) = −ψ̃µ(0, τ) ψµ(π, τ) = ψ̃µ(π, τ) (1.19)
(1.20)

In this case the two different consistent GSO projections in the R sector turn
out to give equivalent results, so there is only one consistent open superstring
theory, the type I theory.

1.3.7 Faddeev-Popov ghosts

We would like to gauge out the Weyl symmetry of the QFT partition func-
tion, by removing the gauge degrees of freedom from the functional integral
Z =

∫
DXe−S . This is commonly done with the Faddeev-Popov procedure.

The gauge is fixed by doing a gauge transformation to a chosen metric, which
we may simply choose as the Minkowski metric ηµν . However, since the func-
tional measure DX is not gauge invariant, this transformation introduces a
Jacobian into the integral which is the Faddeev-Popov determinant. This
determinant may be represented as the partition function for so-called ghost
fields b, c resulting in a total partition function

Z =

∫
DXDbDce−Sη−Sg , (1.21)

where Sη is the gauge fixed action and Sg is the action for the ghost fields,

Sg =
1

2π
d2z(b∂̄c+ b̄∂c̄), (1.22)

where b and c are fields with conformal weight (2, 0) and (−1, 0), respectively.
The central charge for the ghost theory may be calculated to cg = −26.

The fermions in the supersymmetric string theory also introduce ghosts
into the partition function, bringing the total ghost central charge to cg =
−15.

1.3.8 T-duality

Going back to the case of one dimension compactified on a circle, we know
from basic quantum mechanics that in this case the momentum in the com-
pact dimension will be quantised as well,

pµ =
1√
2α′

(αµ0 + α̃µ0 ) =
n

R
, (1.23)
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where n is an integer.
The mass spectrum may be computed by

m2 = −pµpµ =
n2

R2
+
w2R2

α′2
+

2

α′
(N + Ñ − 2), (1.24)

where N + Ñ is the total number of excitations of the oscillators αµm, α̃µm.
This equation is invariant under the exchange

n↔ w, R↔ α′

R
=: R′. (1.25)

This is the sign of T-duality. In fact, the whole partition function of the
theory is invariant under this action: The partition function is [3]

Z(q,R) = (ηη̄)−1
∑

n,w

q(α25
0 )2/2q(α̃25

0 )2/2, (1.26)

and since the only action of T-duality is to change the sign of α̃25
0 , this

function in clearly invariant.
The T-dual theory may be interpreted as a similar theory with a coor-

dinate X ′25(σ, τ) := X25
R (σ + τ)−X25

L (σ − τ), compactified on a circle with
the dual radius R′.

1.4 D-branes

Historically, the possibility of the Dirichlet boundary conditions was initially
overlooked since it breaks coordinate invariance to fix a coordinate to a
specific value. However, if the subspace in which the coordinates are free
is interpreted as a physical and dynamical object, a D(irichlet)-brane, the
boundary condition is compatible with relativity. In this case, the open
strings are connected to D-branes at their end points.

The Dirichlet boundary condition must also be included as a possibility
if we are to make sense of T-duality for open strings. For an open string, the
action of T-duality exchanges Neumann and Dirichlet boundary conditions in
the direction corresponding to the T-dualised coordinate. Since the Dirichlet
boundary condition only makes sense if there is an object to which the string
is connected, this means that the T-duality must also introduce such an
object, a D-brane, into the theory.

There exist p-dimensional (mem)brane solutions in supergravity theories,
i.e. solutions of the supergravity equations corresponding to p-dimensional
sources. These solutions are also charged under the R–R fields. In 1995,
Polchinski [13] realized that the extremal versions of these branes were the
low-energy limit of the Dirichlet branes from string theory. The extremal
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metric, dilaton, and R–R form field are [3]

ds2 = H−1/2
p ηµνdx

µdxν +H1/2
p dxidxi, (1.27)

e2Φ = g2
sH

3−p
2

p (1.28)

C(p+1) = (H−1
p − 1)g−1

s dx0 ∧ · · · ∧ dxp, (1.29)

where the coordinates labelled with Greek indices are along the world-volume
of the brane and those with Latin indices are perpendicular to it. Hp is an
harmonic function Hp = 1 + αpgsN/r

6−p where αp is a constant.
D-branes are BPS states. This implies that a D-brane preserves half of

the supersymmetry of the theory (A collection of D-branes may break more
or all of the SUSY.)

1.5 Geometry from strings

1.5.1 Number of dimensions

As mentioned earlier, the symmetries and consistency demands of ST gives
restrictions on the target space geometry and topology. The most basic
restriction is that of the number of dimensions.

The common theme of the various restrictions we will find is that of Weyl
invariance of the Polyakov action (1.2). As explained above, this symmetry
is required for the Polyakov action to make sense physically. Furthermore,
scale invariance is a nice property for a proposed fundamental theory.

To show the restriction on dimension2, it is enough to consider a flat
target space metric Gµν = ηµν and a perturbation of a flat worldsheet metric,
gab = ηab + δgab. By definition of the energy-momentum tensor Tab, the
response of the partition function to such a perturbation is

δZ = − 1

4π

∫
d2σδgab(σ, τ)〈T ab(σ, τ)〉 (1.30)

and for Weyl symmetry, this response should vanish under a Weyl transfor-
mation, δgab = 2ωηab. We must thus calculate the expectation value of the
energy-momentum tensor, and demand that its trace vanishes. Perturba-
tively, this looks easy since it again involves simply inserting another Tab:

δ〈T ab(σ, τ)〉 = − 1

4π

∫
d2σ′δgcd(σ

′, τ ′)〈T ab(σ, τ)T cd(σ′, τ ′)〉. (1.31)

Going to complex coordinates, we know from conformal field theory that
〈Tzz(z)Tzz(z′)〉 = c

2(z − z′)4. In order for this result to make sense in the
above integral, it is necessary to insert a cut-off a at small distances |z− z ′|:

δ〈Tzz(z)〉 = − c

8π

∫
d2z′

δgzz

(z − z′)4
θ(|z − z′|2 − a2), (1.32)

2The following is based on Cardy [14] and Polchinski [15, ch. 3]
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where θ is a step function. Note that this cut-off breaks the conformal
invariance. Taking the antiholomorphic derivative of the above,

∂z̄δ〈Tzz(z)〉 = − c

8π

∫
d2z′

δgzz(z′)
(z − z′)3

δ(|z−z′|2−a2) = − c

48
∂3
z δg

zz(z), (1.33)

where we have made a Taylor expansion of gzz(z′) around z and noted that
the other terms of the expansion does not survive the angular integration.

The result (1.33) is not diff-invariant, and can therefore not be the whole
solution. Ordinarily in the conformal theory, the contributions from other
terms such as 〈Tzz(z)Tzz̄(z′)〉 would be zero, however because the cut-off
introduced breaks conformal invariance, this is not the case here. These
contributions restore diff-invariance, and we may deduce their form by adding
the necessary terms for invariance to (1.33). We can also use the continuity
equation for the energy-momentum tensor,

∂z̄Tzz = −∂zTz̄z (1.34)

to find the expression for Tz̄z (needed for the trace), resulting in

δ〈Tz̄z(z)〉 = − c

48

(
∂2
z δg

zz − 2∂z̄∂zδg
z̄z + ∂2

z̄ δg
z̄z̄
)

= − c

48
R, (1.35)

where R is the Ricci scalar (correct to first order in δgab) of the worldsheet.
To make the theory invariant (anomaly free) under the Weyl symmetry,

one must therefore have c = 0. Each coordinate field Xµ contributes c = 1
in bosonic string theory and c = 3/2 in superstring theory. The contribu-
tion from the Fadeev-Popov ghosts, c = −26 and c = −15, respectively,
means that this implies D = 26 for the bosonic string and D = 10 for the
superstring.

1.5.2 Effective gravity

In the low-energy limit, the stringy structure will not be visible directly. In-
stead, the strings will look like point particles, with spin and mass depending
on their internal structure. Only the massless excitations will enter in the
effective low-energy action.

The massless spin-2 particles coming from the closed strings are natural
candidates for gravitons. To see whether it actually resembles a graviton
in the low energy limit, we must find its effective action. In principle, one
might do this by integrating out the high energy modes from the action (1.2).
However, Weyl invariance restricts the form of the action enough to make
this procedure unnecessary.

Integrating out the high-energy part of the Polyakov action, eq. (1.9),
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will leave an effective action on the form of a nonlinear sigma model

S = − 1

4πα′

∫
d2σ
√
−det g

[ (
gabGµν(X) + εabBµν(X)

)
∂aX

µ∂bX
ν

+ α′RΦ(X)
]
, (1.36)

where Gµν is a symmetric field which we recognise as a target space metric,
Bµν is an antisymmetric field and Φ is a target space scalar. Demanding
Weyl invariance of this action turns out to give the equations, to first order
in α′,

α′Rµν + 2α′∇µ∇νΦ−
α′

4
HµλωHν

λω = 0, (1.37)

−α
′

2
∇ωHωµν + α′∇ωΦHωµν = 0, (1.38)

D − 26

6
− α′

2
∇2Φ + α′∇ωΦ∇ωΦ− α′

24
HµνλH

µνλ = 0, (1.39)

where Rµν is the target space Ricci tensor, H = dB, and ∇µ is the covariant
derivative on the target space. We recognise the first of these as Einstein’s
equations with source terms from Bµν and Φ, but note that it receives cor-
rections in higher order in α′. The effective space-time action corresponding
to these equations of motion is

S =
1

2κ2

∫
d26x
√
−detGe−2φ

[
R− 1

12
HµνλH

µνλ + 4∂µΦ∂µΦ +O(α′)
]
.

(1.40)

Extending the nonlinear sigma model above with fermions to make it su-
persymmetric will introduce more space-time fields. The fields in the NS–NS
sector correspond to the fields in the bosonic case above. In addition, we get
fermionic fields (coming from the R–NS and NS–R) sector, and additional
bosonic fields from the R–R sector. The latter fields organise into antisym-
metric p-tensors C(p), where p is odd in type IIA theory and even in type
IIB theory. The result is the type IIA and IIB supergravity theories, with
bosonic actions

SIIA =
1

2κ2

∫
d10x
√
−detG

{
e−2Φ

[
R+ 4(∇Φ)2 − 1

2
H2

(3)

]

− 1

4
G2

(2) −
1

48
G2

(4)

}
− 1

4κ2

∫
B(2)dC(2)dC(3) (1.41)
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SIIB =
1

2κ2

∫
d10x
√
−detG

{
e−2Φ

[
R+ 4(∇Φ)2 − 1

2
H2

(3)

]

− 1

12
(G(3) + C(0)H(3))

2 − 1

2
(dC(0))

2 − 1

480
(G(5))

2

}

+
1

4κ2

∫ (
C(4) +

1

2
B(2)C(2)

)
G(3)H(3), (1.42)

where the field strengths are

H(3) = dB(2),

G(2) = dC(1), G(4) = dC(3) +H(3) ∧ C(1),

G(3) = dC(3), G(5) = dC(4) +H(3) ∧ C(2).
(1.43)

1.5.3 Gauge theory

Gauge theory from open strings

Since the open string theory contains strings transforming as vectors in space-
time, this theory might give a model of a gauge theory, or more specifically
of a Yang-Mills theory at low energy. To find the effective action, one must
work out the amplitudes for string scattering, and this leads to an Abelian
(U(1)) gauge theory at low energy.

To allow for other gauge groups, more degrees of freedom must be in-
troduced by hand into the string action. These so-called Chan-Paton fac-
tors [16] may be interpreted as discrete degrees of freedom associated with
the endpoints of the string. The low-energy space-time action receives a term
− 1

4g2
YM

Tr(F 2), where F µν is the matrix-valued Yang-Mills field strength.
The gauge group of this theory depends on the number of degrees of

freedom in the Chan-Paton factors, and on whether the strings are oriented
or not. For oriented strings, the gauge group will be U(N), while in the
unoriented case, the group will be SO(N) or Sp(N/2). However, the oriented
open string theory may be shown to be to be inconsistent.

It turns out that the gauge group is restricted even more. In the type I
superstring theory, the combined R-R part of the partition function for the
cylinder, the Möbius strip and the Klein bottle turns out to be [2, ch. 10]

Z = −i(N ± 32)2C

∫ ∞

0
ds(1 +O(e−2s)), (1.44)

with the upper sign for Sp(N/2) and the lower one for SO(N). This diverges3

badly unless the gauge group is exactly SO(32).
3The NS-NS part of the partition function cancels the R-R part because of supersym-

metry, but when an amplitude is calculated with vertex operators inserted, this divergence
will actually matter.
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Gauge theory from D-branes

To find the low-energy action of a D-brane, one may again look at the condi-
tion for Weyl invariance, for a sigma model on a worldsheet with boundaries
at σ = 0, π. This procedure will give space-time equations of motion, leading
to the following action:

SDBI = −Tp
∫
dp+1ξe−Φ det

√
Gµν +Bµν + 2πα′Fµν , (1.45)

where ξµ are coordinates on the D-brane world volume, and Tp is the tension
of the D-brane. This action is known as the Dirac-Born-Infeld action. By
expanding it in α′, we see that it is a deformation of the Yang-Mills action,

S = −Tp
∫
dp+1ξe−Φ TrFµνF

µν +O(α′), (1.46)

so the low-energy limit is indeed again a Yang-Mills theory, this time re-
stricted to the p + 1 dimensions spanned by the D-brane. This fact has
lead to the so-called “brane world” models where our observable universe is
conjectured to be a D3-brane.

From Dp-branes in type I superstring theory, we get the DBI action,
eq. (1.45), plus a part from the interaction with the R–R field C(p) called a
Wess-Zumino part,

SWZ = µp

∫
C(p) ∧ e2πα′F+B, (1.47)

Including instanton effects, it can be shown by an anomaly inflow argument
[17, 18] that the corrected version is

S = SDBI + µp

∫
C(p) ∧ e2πα′F+B

√
Â(4πα′R), (1.48)

where Â(R) is a polynomial known as the A-roof genus.

Gauge theory from compactification

The Kaluza-Klein method describes how gauge bosons appear when some
dimensions are wrapped on a small compact space. Consider the effect of
compactifying one dimension on a circle on the gravitational theory. A gen-
eral metric may be written on the form

ds2 = G26
MNdx

MdxN = G25
µνdx

µdxν + e2σ(dx26 +Aµdx
µ)2. (1.49)

The Ricci scalar for this metric becomes R26 = R25−2e−σ∇2eσ−1
4e

2σFµνF
µν ,

and so the 25-dimensional theory becomes a theory of gravitation plus a
gauge field Aµ and a dilaton constructed from σ.

By compactifying several dimensions, non-Abelian Yang-Mills theories
will appear after the compactification. The symmetries of the space on
which the original theory is compactified will determine the gauge group of
the YM theory.
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Enhanced gauge symmetry from singularities

One of the major new developments of string theory in the 1990s was the
realization that the five consistent superstring theories were different aspects
of the same theory. In particular, there is an explicit duality between Type
IIA string theory and the heterotic string theory, which has an enhanced
gauge theory at certain points of its moduli space. This enhancement should
also exist in the IIA moduli space.

The enhanced gauge theory exist on points where the theory is geometri-
cally singular. The singularity reflects that certain modes become massless,
which enable the enhancement of the symmetry. E.g., on An+1-singularities,
the gauge group is U(n).

The process of the enhanced gauge symmetry was explained [19] in the
T-dual picture of IIB ST (more precisely, the T-duality should be combined
with an S-duality to get the picture described here), where the An−1 case is
mapped to n D1-branes approaching each other on the singular point in the
moduli space. In this picture, the gauge theory enhancement is the standard
Chan-Paton mechanism where the U(1)n gauge group is enhanced to U(n).

1.5.4 Supersymmetry and geometry

World sheet supersymmetry

Demanding extended supersymmetry of the world sheet action has conse-
quences for the allowed target space geometry. For the case where the B-field
is closed and the dilaton Φ constant, N = 2 supersymmetry (counting both
left- and right-moving sectors, N = (2, 2) SUSY) means [20] that the target
space must be a complex Kähler manifold. One supersymmetry transforma-
tion may be normalised such that it has the form δεX

µ = ε̄ψµ. The extended
supersymmetry will then be of the form

δεX
µ = ε̄fµνX

ν , (1.50)

and it turns out that the tensor fµν must be covariantly constant and satisfy

fµνf
ν
λ = −δµλ, Gµνf

µ
λf

ν
ω = Gλω (1.51)

for this to be consistent. These equations imply that f µν defines an almost
complex structure on the target space, and Gµν is a Hermitian metric. Since
the almost complex structure is covariantly constant, the manifold is Kähler.

Target supersymmetry

It is one thing to require a symmetry of an action, another thing to require
the symmetry of a state. If we want the vacuum state to preserve (some of
the) supersymmetry, this will restrict the action even more.
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We will look at the effective low-energy fields, specifically the fermions,
and require that they are invariant under a supersymmetry transformation.
The supersymmetry transformation of the gravitino ψ the dilatino χ and the
gaugino λ turn out to be

δψµ = ∇µε (1.52)

δψm = (∂m +
1

4
Γmnpγ

np)ε (1.53)

δχ = (γm∂mφ)ε (1.54)
δλ = Fmnγ

mnε, (1.55)

where Latin indices are used for the flat space-time directions and Greek
indices for the compactified directions. ε(x) is an infinitesimal supersymme-
try parameter. The action is invariant under any choice of ε, but the first
equation above tells us that ε must be covariantly constant in the compact
space in order to be a symmetry of the vacuum state.

The compact manifold on which we compactify the extra six dimensions
must therefore allow a covariantly constant spinor. This is not true for all
manifolds. Furthermore, if the manifold in question allows several covariantly
constant spinors, our vacuum state will have extended supersymmetry.

To see what this means for the topology of the 6-manifold, consider the
holonomy group G ⊆ SO(6). Since there is a covariantly constant spinor ε,
this group is such that gε = ε for all g ∈ G. The maximal subgroup of SO(6)
that has this property is SU(3). If the holonomy is a proper subgroup of
SU(3), there will be several constant spinors and extended supersymmetry.
For the type II string, the left- and right-moving sectors will each provide
one space-time supersymmetry generator, giving N = 2 in the case where
the holonomy group is the full SU(3).

An n-dimensional Kähler manifold with SU(n) holonomy is called a
Calabi-Yau manifold. The condition on holonomy is equivalent to the con-
dition of a vanishing first Chern class. Is was conjectured by Calabi and
proven by Yau that such manifolds always admit a unique Ricci-flat metric.
This means that the Einstein equations on such a manifold have an unique
solution. However, since, as we have seen, there are corrections to these
equations from string theory, the correct “stringy” metric is a deformation of
this one.

There are a vast amount of (families of) Calabi-Yau manifolds. It is not
currently known whether the number of families is finite or not. Many such
manifolds, or varieties, may be found as solutions of polynomial equations
in projective space. One family has been much studied in the literature, the
Quintic defined by a degree five polynomial in CP4. Of special interest is
the Fermat quintic

x5
1 + x5

2 + x5
3 + x5

4 + x5
5 = 0, (1.56)

where the xi are homogeneous coordinates on CP4.
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1.6 Geometry of D-branes

1.6.1 Boundary Conditions

The N = 2 supersymmetric sigma model was used by Ooguri, Oz, and
Yin[21] to classify the possible boundary conditions consistent with a bound-
ary representing a D-brane in spacetime, i.e. a BPS state preserving half of
the supersymmetry. The consistent boundary conditions were grouped into
A-type boundary conditions

JL = −JR, G+
L = ±G−R, UL = eiθU∗R, (1.57)

and B-type boundary conditions

JL = JR, G+
L = ±G+

R, UL = ±UR. (1.58)

Here, JL,R are the U(1) currents, G±L,R are the supersymmetry genera-
tors, and UL,R is the spectral flow operator. The factor θ may be absorbed
into the definition of the holomorphic n-form on the CY, but we will keep
it explicit here. If there are several A-type D-branes present, they will not
define a BPS state unless they have the same value for θ. In the language
of Fuchs et al.[22], an A-type boundary condition with a specified value for
θ may be called an Aθ-type boundary condition.

In general, the boundary conditions may be written

∂Xµ = Rµν ∂̄X
ν , (1.59)

for an orthogonal matrix R. Eigenvectors of R with eigenvalue +1 and
−1 correspond to Neumann and Dirichlet boundary conditions, respectively.
The A-type condition (1.57) implies

Ωµ1...µnR
µ1 · · ·Rµn = eiθΩ̄ν1...νn (1.60)

1.6.2 Special Lagrangian Cycles

The A-type boundary condition was shown by Ooguri et al. to imply that
the D-brane wraps a special Lagrangian cycle, the same condition found by
Becker et al.[23] for A-type D-branes from the low-energy effective superme-
mbrane action. The condition that a cycle D in the CY space X is special
Lagrangian is that[24]

J |D = 0, Im eiθΩ|D = 0, (1.61)

where J is the Kähler form and Ω is the holomorphic n-form on X.
The cycle D may be expanded in a symplectic basis (Ai, Bi) as

D = QiA
i + Q̃iBi. (1.62)
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The integrals of the holomorphic n-form over the basis cycles determines the
periods

zi =

∫

Ai
Ω Fi =

∫

Bi

Ω. (1.63)

1.6.3 B-type D-branes

Ooguri et. al.[21] (see also [23]) found that a D-brane with a “B-type” bound-
ary condition is wrapping a holomorphic submanifold of the Calabi-Yau space
X. In particular, this means that the submanifold is even dimensional.

In addition, there are conditions on the gauge field living on the brane4.
The conditions for unbroken supersymmetry in a gauge theory was first stud-
ied in the context of the heterotic string, see [25, ch. 15]. In this case, with
the assumption that H = dB = 0 and a constant dilaton, the conditions on
the field strength may be given in complex coordinates as

Fµν = Fµ̄ν̄ = 0, , (1.64)
gµν̄Fµν̄ = 0, (1.65)

where Fµν̄ = F aµν̄ ta is the Yang-Mills field strength and gµν̄ is the (Hermi-
tian) metric on X. Equation (1.64) says that F is a (1, 1)-form, and this is
equivalent to saying that the vector bundle E (defined by the field strength
F ) is holomorphic.

Equation (1.65) is correct to lowest order in α′ only. A more detailed
discussion was done by Mariño et al. [26] by studying the conditions for
instantons in SYM to be BPS and by Kapustin [27] from the worldsheet
point of view. The result for a brane wrapping a 6-dimensional Kähler
manifold with B = 0 is

ω ∧ ω ∧ F − 1

3
(F ∧ F ∧ F ) = cot θE(ω ∧ F ∧ F − 1

3
ω ∧ ω ∧ ω), (1.66)

where ω is the Kähler form of the manifold and θ is a constant which may
be determined by the topological charges of the D-brane.

4This is the low-energy view point, of course, the “gauge field” in the high-energy limit
should be replaced by something “stringy”.



Chapter 2

Gauge/gravity for wrapped
and fractional branes

2.1 The gauge/gravity correspondence

2.1.1 D-Branes and open/closed duality

From the point of view of open string theory, D-branes are objects to which
the strings’ endpoints may be attached. We know from section 1.5.3 that in
the low energy limit there is a Yang-Mills theory living on the world-volume
of the D-brane.

Now consider the closed string theory. In this picture, D-branes are in the
low-energy limit solutions of supergravity corresponding to massive objects
with Ramond-Ramond charge. This limit (apparently) does not contain a
Yang-Mills theory. However, by considering open/closed duality, we know
that these two pictures should describe the same phenomena. This is the
basic idea behind the gauge/gravity correspondence.

To make this idea more precise, we should give a more precise definition
of the low-energy limit. The limit should be taken such that the sector of the
open string theory which interacts with the D-brane is separated from the
free closed string sector which exists far from the brane. This introduction
is based on the review [28].

2.1.2 The AdS/CFT correspondence

The AdS/CFT correspondence is the gauge/gravity correspondence for the
specific case of a D3 brane in flat space. It was discovered in the low energy
limit of supergravity [29].

Consider this limit of a string theory containing N overlapping D3 branes.
The low energy effective string action can be written schematically as

S = Sbulk + Sbrane + Sint. (2.1)

21
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Sbulk is the low energy limit of closed string theory, 10-dimensional (type
IIB) supergravity. Sbrane is the limit of open string theory, the DBI action
on the brane world-volume, which to zeroth order in α′ is an N = 4 super-
Yang-Mills (SYM) theory. Sint collects terms in the low energy action with
interactions between these two sectors.

The bulk Lagrangian may be expanded in the square root of Newton’s
constant, κ ∼ gsα

′2, and is to zeroth order in this parameter a free theory.
The interaction part of the action is proportional to κ to leading order. Thus,
if we keep the (low) energy fixed and send α′ → 0, the system decouples into
a free gravitational theory and the four dimensional SYM theory.

From the supergravity point of view, a D-brane is described by the solu-
tion given in eq. (1.27) with the metric

ds2 = H−1/2(−dt2 + dx2
1 + dx2

2 + dx2
3) +H1/2(dr2 + r2dΩ2

5). (2.2)

The energy of objects close to the horizon is redshifted from the point of
view of an observer far away. In the low energy limit, excitations close to
the horizon will not have the energy available to interact with excitations far
from the brane. These two regions decouple in the limit, leaving free bulk
gravity (as above), and the near horizon limit of the geometry (2.2) which
may be approximated by H ∼ R4/r4, leaving

ds2 =
r2

R2
(−dt2 + dx2

1 + dx2
2 + dx2

3) +
R2

r2
dr2 +R2dΩ2

5, (2.3)

which is the metric for the space AdS5 × S5. The proper near horizon limit
to take is r → 0 with r/α′ fixed, such that the energy of objects in the
near-horizon region is fixed (with respect to observers at infinity) as α′ → 0.

The AdS/CFT correspondence is now apparent; identifying the free grav-
ity parts of the two viewpoints, the remaining theories on each side must also
be identical. Thus, the 5-dimensional AdS supergeometry is a dual descrip-
tion (in this limit) of the 4-dimensional SYM theory. This correspondence
is particularly useful since we can use perturbation theory on the SYM side
when g2

YMN ∼ gsN � 1, while the supergravity approximation is valid
when R ∼ gsN � 1. The supergravity theory may be used to calculate
non-perturbative properties of SYM.

The above discussion shows how the correspondence takes place in su-
pergravity at low energies and as α′ → 0. The full conjecture states that
type IIB string theory on an AdS5×S5 background is dual (for all values of
gs, N and α′) to the conformal N = 4 SYM theory in four dimensions.

2.1.3 The general correspondence

The AdS/CFT correspondence as stated above concerns a highly special and
non-physical conformal YM theory with N = 4 supersymmetry. To make
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contact with experiments, the best option would be to be able to describe the
Standard Model of particle physics non-perturbatively with a gravitational
dual. But also theories with some supersymmetry have a chance of being
relevant for observations, e.g. the minimal supersymmetric extension of the
Standard Model with N = 1.

From a more mathematical point of view, extending the AdS/CFT cor-
respondence to other YM models may be considered as a first step on the
road to a general identification of YM and gravitational theories. In this
sense, also extensions to other dimensions than four are interesting.

For correspondences with different dimension, if we replace the D3 brane
in the previous section with a Dp brane for any p (using IIA or IIB theory
according to whether p is even or odd), we get a correspondence between
supergravity on AdSp+2×S8−p and SYM in p+ 1 dimensions. In flat space,
the SYM theory will always have 16 preserved supercharges, corresponding
to breaking half of the supersymmetry of the original type II string theory.

To extend the correspondence to theories with less supersymmetry, one
may modify the geometry and topology of the space in which the D-brane
exists. Wrapping the D-brane on a Calabi-Yau manifold or an orbifold, or on
non-trivial cycles within such spaces breaks more supersymmetries. Paper 1
discusses two such examples, one using wrapped branes and another using
fractional branes.

2.2 Wrapped branes

The near horizon geometry of a Dp-brane is a product of a p+2-dimensional
anti de Sitter space with a sphere. In supergravity, solutions with this
geometry are found by “inverting” a Kaluza-Klein compactification of 10-
dimensional (or 11-dimensional) supergravity to p + 3 dimensions. This is
possible since the compactification may be formulated as a consistent trun-
cation [30], meaning that any solution of the truncated theory can be “lifted”
to a solution of the full 10- or 11-dimensional theory.

It was realized in [17] that the supergravity description of a D-brane
wrapped on a nontrivial cycle of a manifold requires a form of “topological
twisting” in order to preserve half of the supersymmetry as it should. The
geometric explanation for this follows.

The field theory on the p + 1-dimensional world volume of a Dp-brane
consists of a gauge field and 9 − p scalars. The scalars are remnants of
the string movement in the “outside” dimensions, and may be interpreted
as degrees of freedom corresponding to the movement of the D-brane itself
in the external space. In a nontrivial space, these degrees of freedom are
not arbitrary functions of the world-volume. They must be sections of the
normal bundle of the D-brane.

On the supergravity side, the truncation (Kaluza-Klein compactification)
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of the theory to p+ 3 dimensions introduces gauge fields Aµ into the theory.
The above geometry means that Aµ is the connection on the normal bundle
[31].

2.3 Fractional branes

2.3.1 Orbifolds

Dealing with strings in compact spaces may be technically difficult, since the
metric of the background is non-trivial. In fact, in the case of 6-dimensional
Calabi-Yau manifolds, not a single example of an explicit metric has been
found. However, some simplified versions of such spaces exist.

An orbifold is made by taking a smooth space M (e.g. flat space Rd or
Cd), and identifying points transforming into each other under some discrete
group Γ. If some points in M are stationary (fixed points) under the trans-
formation induced by a non-trivial element of Γ, the resulting space will be
singular at these points and is called an orbifold.

2.3.2 D-branes on orbifolds

To be invariant under the group action, a generic D-brane in the orbifold is
represented by n D-branes placed on n points in the covering space Cd that
are identified by Γ. These branes transform in a representation of the group
Γ which is not in general irreducible. On a fixed point of the group, i.e.,
a singular point of the orbifold, they may be reduced to fractional branes
transforming under irreducible representations of Γ. On an orbifold Cd/Zn,
the fractional branes will have charge Q/n with respect to the regular brane
charge Q.

As an example[32, 33, 34], consider the orbifold C2/Z2, where the non-
trivial element of Z2 acts as (x, y) → (−x,−y). A D0-brane at a generic
point in the orbifold (or a Dp-brane which is point-like when restricted to
the orbifold) is represented by two D0-branes in C2— one at a point (x, y)
and another, identical one at (−x,−y). Open string states will have a Chan-
Paton factor which is a two by two matrix, labelled by the branes. The action
of the non-trivial group element on the Chan-Paton matrix is to interchange
the branes, i.e., the regular representation

{1, σ1}, σ1 =

(
0 1
1 0

)
. (2.4)

This is a reducible representation (Z2 is an Abelian group, which only has
one-dimensional irreducibles). The irreducible representations of Z2 are
{1, 1} and {1,−1}, and so we can construct Chan-Paton factors transform-
ing under these, corresponding to a single D-brane. However, the states can
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not be invariant under the Z2 action unless the brane is placed on a fixed
point of the group. These are the fractional branes on this orbifold.

2.3.3 Connection between wrapped and fractional branes

An orbifold of the type C2/Γ, where Γ is a discrete subgroup of SU(2), can
be shown to be a limit of a smooth space called an asymptotically locally
Euclidean (ALE) space. In this sort of space, the singular point is replaced
(resolved) by a compact manifold (the vanishing cycle). In the limit where
the compact manifold has zero volume, the orbifold is recovered. For the
case C2/Z2, the compact space is the projective sphere CP1 ∼= S2.

A fractional D-brane may be seen as a D-brane wrapping the vanishing
cycle of an ALE space, e.g. a fractional D2 brane may be seen as a D4 brane
with two dimensions wrapped on the vanishing cycle CP1.

2.4 The Eguchi-Hanson metric

The ALE space asymptotically like C2/Z2 in the example above actually
has a well-known metric known as the Eguchi-Hanson metric [35]. This
is a solution of the Euclidean Einstein equations with a self-dual Riemann
curvature,

Rµνλσ =
1

2
εµνωρRωρλσ. (2.5)

The metric may be written

ds2 =

(
1−

(a
r

)4
)−1

dr2 +
1

4

(
1−

(a
r

)4
)

(dψ + cos θdφ)2

+
1

4
r2(dθ2 + sin2 θdφ2). (2.6)

Defining a new coordinate u2 = r2(1− (ar )4), we find that u du ≈ 2r dr when
r→ a, so the metric in the u, ψ plane may be written [36]

ds2 ≈ 1

4

(
du2 + u2dψ2

)
(2.7)

near the apparent singularity r = a. This is known as a “bolt”, which is not
singular as long as ψ runs from 0 to 2π (otherwise, there will be a conic
singularity at r = a).

In our case the original metric, eq. (2.6) looks like it describes a S3 at
infinity, but this would mean that the range of ψ was 0 ≤ ψ < 4π. Restricting
to a period of 2π means that the asymptotic topology is S3/Z2

∼= RP3. This
is the correct asymptotics for the ALE space. Letting a → 0, the metric
becomes flat everywhere except for a singularity at the origin. This is exactly
the metric for C2/Z2. The Eguchi-Hanson metric thus describes a smooth
space which asymptotes to C2/Z2, and the limit of vanishing volume of the
CP1 cycle is taken by letting a→ 0.
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2.5 Probing the moduli space of gauge theories

The low-energy limit of a configuration of N Dp-branes contains a p-dimen-
sional SU(N) Yang-Mills theory breaking to SU(N−1) with a Higgs vacuum
expectation value corresponding to the separation of the branes. Since the
Higgs vev is typically used as a parameter of the moduli space of a YM theory,
this space can be probed by tuning the relative position of the D-branes.

The procedure used for this probing is to let a “probe brane” move in
the geometry created by N − 1 branes, in the supergravity low-energy limit.
The effective action of the low-energy theory is the DBI action, eq. (1.45),
plus a Wess-Zumino part, eq. (1.47),

S = −Tp
∫
dp+1xe−Φ det

√
Gµν +Bµν + 2πα′Fµν + Tp

∫
C(p) ∧ e2πα′F+B,

(2.8)
and the probing is achieved by inserting the (induced) metric of N−1 branes
into this action.

For the case of a Dp-brane in flat space, the metric is given by eq. (2.2),
and inserting this into eq. (2.8) gives

S ≈ −Tp
∫
dp+1x

(
1

2
∂µxi∂µxi + (2πα′)2F µνFµν

)
+ const., (2.9)

which, if we identify Φi = xi/(4πα′) as the gauge theory scalars, is exactly
(apart from the irrelevant constant term) the action of SYM theory in p+ 1
dimensions with 16 supercharges. The metric on the moduli space in this
case is flat, as a cause of the high amount of supersymmetry in this case.
To get more interesting metrics, one should look at configurations breaking
supersymmetry. This is what we do in paper 1.

In the paper, we look at two geometries corresponding to 8 supercharges
in 2+1 dimensions (N = 4 SUSY). The supersymmetry is broken from the
flat case of 16 charges in two different ways. In the first case, we look at a
D4-brane wrapped on a two-cycle in an ALE space, topologically equivalent
to the Eguchi-Hanson space above. In the second case, we consider fractional
branes on a C2/Z2 orbifold. Both geometries lead to the same SYM theory,
as expected since the two cases are related, as we have shown above.

The supergravity solution corresponding to the N wrapped branes was
found by a slight detour. We start with a solution of 7-dimensional gauged
supergravity from [31] corresponding to an M5 brane in 11-dimensional su-
pergravity. The solution is uplifted to 11 dimensions, and then one dimen-
sion tangential to the brane is compactified to obtain a D4 brane in 10-
dimensional supergravity. The final metric is found to have a form which
may be described as a “warped” Eguchi-Hanson space, as expected from this
topology.

In the fractional case, we actually consider a solution corresponding to N
fractional D2 branes and M D6 branes (the D6 branes wrapping the whole
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ALE space in addition to two flat spatial dimensions common to the D2 and
D6 branes). The D6 branes contributeM hypermultiplets to the SYM theory
transforming in the fundamental representation of the gauge group SU(N).
In this case, the solution is found by considering the branes as “wrapped”
on the zero-volume vanishing 2-cycle of the ALE space. On this cycle there
is a constant background B-field necessary to define a sensible CFT for this
geometry [37, 38].

The metrics on the moduli space in the two cases is computed to

ds2
wrap =

1

g2
YM(µ)

(
dµ2 + µ2dΩ2

)
+ g2

YM(µ)

(
dΣ +

N cos θ

4π
dϕ

)2

, (2.10)

ds2
frac =

1

g2
YM(µ)

(
dµ2 + µ2dΩ2

)
+ g2

YM(µ)

(
dΣ +

(2N −M) cos θ

8π
dϕ

)2

,

(2.11)

where dΩ2 = dθ2 + sin2 θdϕ2 , and µ, θ, ψ, and Σ are scalars of the theory.
This corresponds to the perturbative result for d = 2 + 1, N = 4 SYM
theory. The reason why we are not able to find the total non-perturbative
result seems to be that an enhançon mechanism [39] is taking place. The
running volume of the vanishing 2-cycle of the ALE space goes to zero at
a certain locus, signalling that the supergravity description breaks down at
this point.
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Chapter 3

Stability, topology and
geometry

3.1 Sheaves, D-branes and stability

The field strength of a Yang-Mills theory defined on a manifold X defines
a vector bundle on the manifold. Vector bundles are of great interest in
differential and algebraic geometry, as well as a “generalisation”, a coherent
sheaf. Roughly speaking, a coherent sheaf is a vector bundle with non-
constant rank. More formally, a sheaf E is defined as an association of a
group (or vector space) E(U) to each open subset U ⊂ X, which is called
the sections of E over U , together with a restriction map for all open subsets
V ⊂ U which must satisfy certain conditions. A collection of D-branes on
a space X may be approximated by a sheaf on X in the limit where X
is large enough to make stringy corrections irrelevant. More properly, a D-
brane should be considered as an element of the “derived category of coherent
sheaves” D(X).

It is of interest in geometry to classify the possible sheaves on a manifold
(or variety). This classification is made simpler by introducing notions of
stability which will be discussed below. Classification of stable sheaves turn
out to be an easier task than the full classification problem, and in a sense
an unstable sheaf may be “deconstructed” into stable sheaves. The concept
of stability was introduced by Mumford, in the case of vector bundles on
curves.

In physics, there is also a natural condition of stability; a D-brane is
stable if it can not decay into other D-branes. Perhaps surprisingly, there
seems to be a connection between these two types of stability. A consequence
of this connection is studied in paper 2, where we find that a modification of
the traditional stability condition used in geometry is necessary to describe
physically stable D-branes.

More on stability, vector bundles, and sheaves may be found in [40].

29
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3.2 Mumford and Gieseker stability

The geometry of B-type D-branes was discussed in section 1.6.3. The con-
ditions for preserving supersymmetry was that the vector bundle, E, was
holomorphic, and that the field strength satisfied an equation. To lowest
order the equation was given in eq. (1.65),

gµν̄Fµν̄ = 0. (3.1)

This equation is a special case of the Hermitian Yang-Mills (also known as
Hermitian-Einstein) equation

gµν̄Fµν̄ = µI, (3.2)

where I is an identity matrix. By the Donaldson-Uhlenbeck-Yau (DUY)
theorem, the existence of a solution to this equation is equivalent to Mumford
stability of the vector bundle E. Taking the Hodge dual of the above equation
gives

F ∧ ωn

(n− 1)!
= µI

ωn

n!
. (3.3)

We have introduced the Kähler form ωµν̄ = gµν̄ of the target space with the
property that ωn/n! is the volume form1.

Mumford stability, or µ-stability (more properly named Mumford-
Takemoto stability for the case of general dimension of the base manifold) is
a condition for a vector bundle or sheaf which requires the definition of the
slope (or normalised degree) µ,

µ(E) =
1

rkE

∫
c1(E) ∧ ωn−1 =

degE

rkE
. (3.4)

This stability condition does not really need a Kähler manifold, any ample
line bundle could be used in place of ω, but we will only use it in the case
where the base manifold is Kähler.

Definition 3.2.1 Let E be a torsion free coherent sheaf on a Kähler mani-
fold. E is Mumford stable ( semistable) if, for all coherent subsheaves E ′ of
E with 0 < rkE ′ < rkE, we have

µ(E′) < µ(E) (µ(E ′) ≤ µ(E)). (3.5)

E is called unstable if it is not stable and strictly semistable if it is semistable
but not stable.

The connection between Mumford stability and equation (3.3) was proved
by Donaldson[41] for the case where X is a (complex) surface, and by Uh-
lenbeck and Yau[42] for the general case.

1There is an unfortunate misprint in eq. (4) and the unnumbered last equation on p. 76
of paper 2. The volume form is missing from the right side of these equations.



3.3 Π-Stability 31

Theorem 3.2.2 (Donaldson, Uhlenbeck, Yau) Let E be a holomorphic
vector bundle on a compact Kähler manifold X with Kähler form ω. If there
exists a Hermitian-Einstein connection on E, then E is Mumford stable.
Conversely, if E is Mumford stable, there exists a Hermitian-Einstein con-
nection on E and this connection is unique up to (C∞) automorphisms of
E.

Through the DUY theorem we therefore get a connection between the
“topological” condition of (Mumford) stability and the geometric problem of
finding solutions of (3.3), and thus also the problem of finding supersymmet-
ric (BPS) solutions of Yang-Mills theory.

The definition of Mumford-Takemoto stability is not the best suited in
higher dimensions. A better behaved condition in many cases is known as
Gieseker stability. A correspondence to a non-linear differential equation,
similar to the DUY theorem, has been studied by Leung [43].

3.3 Π-Stability

In a theory with extended supersymmetry, there exist a set of bosonic sym-
metry generators commuting with all the other generators of the symme-
try algebra. In an N = 2 supersymmetric theory there is a single central
charge, denoted Z. All states in the theory satisfy the Bogomol’nyi-Prasad-
Sommerfield (BPS) bound,

m ≥ |Z|, (3.6)

where m is the mass and Z is the central charge of the state in question.
The states saturating this bound, are exactly the BPS states breaking one
half of the supersymmetry, of which D-branes are examples.

The mass of a D-brane E is thus given by the central charge, which again
is given by the R–R charge of the D-brane,

m(E) = |Z(Q(E))|. (3.7)

By conservation of the central charge and energy, a state can only decay into
states with the same phase of Z:

ϕ(E′) = ϕ(E) :=
1

π
Im logZ(Q(E)) (3.8)

when E′ is a (possible) decay product of E.
This motivated the definition of Π-stability [44], modelled after Mumford

stability as follows: A coherent sheaf E is Π-stable if, for all subsheaves E ′

one has
ϕ(E′) < ϕ(E). (3.9)
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The central charge Z(E) may be calculated from the topology of a B-
type brane by using the representation of the R–R-charge in terms of the
Mukai vector

Q(E) = ch(E)
√

Td(X), (3.10)

where Td(X) is the Todd class of the base CY-manifold X. The central
charge is then given by [45]

Z(E) = −
∫

X
e−iωQ(E) = −

∫

X
e−iω ch(E)

√
Td(X), (3.11)

where ω is the complexified Kähler form of X.

3.3.1 Example: The Quintic

On the Quintic, the Kähler moduli space is one-dimensional, and we parametrise
the Kähler form as ω = tJ , where J is the cohomology class of the hyper-
plane bundle and t = B+ iV . We also parametrise the Chern character of a
sheaf as2

ch(E) = r +
Ch1

3
J +

Ch2

6
J2 +

Ch3

6
J3. (3.12)

The Todd class for the Quintic is Td(X) = 1 + 5
6J

2. With B = 0, the
expression for Z(E) above reduces to

Z(E) = −5irt3 + 5Ch1t
2 +

(
25

2
ir + 5iCh2

)
t− 25

6
Ch1 − 5Ch3. (3.13)

The requirement (3.9) for Π-stability may be expressed as

ImZ ′ReZ − ImZ ReZ ′ < 0, (3.14)

which in this case becomes
(

Ch ′1
r′
− Ch1

r

)
t5 +

(
10

3

Ch1

r
− 10

3

Ch ′1
r′

+
Ch ′2Ch1

rr′
− Ch2Ch ′1

rr′
+

Ch3

r
− Ch ′3

r′

)
t3 +

(
25

12

Ch ′1
r′
− 25

12

Ch1

r
+

5

2

Ch ′3
r′
− 5

2

Ch3

r
+

5

6

Ch2Ch ′1
rr′

− 5

6

Ch ′2Ch1

rr′
+

Ch2Ch ′3
rr′

− Ch ′2Ch3

rr′

)
t < 0 (3.15)

2This parametrisation is done to make contact with the generalised slopes
µ(k) := Chk/r defined in paper 2.
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Thus, the requirement for a sheaf to be Π-stable on the quintic in the
limit t→∞ is that, for all E ′ ⊂ E,

Ch ′1
r′
≤ Ch1

r
, (3.16)

and, if Ch1/r = Ch ′1/r
′ for some E ′ ⊂ E,

Ch1

r

Ch ′2
r′
− Ch ′3

r′
≤ Ch ′1

r′
Ch2

r
− Ch3

r
, (3.17)

and, if also this inequality is satisfied as an equality for some E ′,

5

2

Ch ′3
r′

+
5

6

Ch2Ch ′1
rr′

+
Ch2Ch ′3
rr′

<
5

2

Ch3

r
+

5

6

Ch ′2Ch1

rr′
+

Ch ′2Ch3

rr′
(3.18)

If strictly satisfied, the first inequality of this series implies that the sheaf is
Mumford stable. If satisfied as an equality for some E ′, this implies Mumford
semistability. We can therefore see that all Mumford stable sheaves are Π-
stable, and all Π-stable sheaves are Mumford semistable. However, not all
Π-stable sheaves are Mumford stable.

3.4 Geometric Π-stability

The “geometric limit” of a D-brane is not exactly the Yang-Mills theory, but
includes corrections. The equation for the gauge field strength found by
Mariño et. al [26] for the case of a D6-brane wrapping a 3-fold with B = 0
is given in eq. (1.66)

ω ∧ ω ∧ F − 1

3
(F ∧ F ∧ F ) = cot θE(ω ∧ F ∧ F − 1

3
ω ∧ ω ∧ ω), (3.19)

where ω is the Kähler form and θE is a constant determined by the topol-
ogy of the gauge vector bundle E. The value of cot θE may be found by
integrating equation (3.19).

Since equation (3.19) contains string corrections with respect to the Her-
mitian Einstein equation, and Π-stability is proposed as a string corrected
stability condition, one might expect that there is a connection between
these two. In paper 2 we consider the geometric limit of Π-stability, which
we call π-stability, and a slight deformation of eq. (3.19). By building on a
result by Leung [43], we find that π-stability is the condition for eq. (3.19)

(modified to take into account the factor
√
Â(X) in eq. (1.48)) to have a

unique solution.
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Chapter 4

Gepner models, D-branes and
algebraic geometry

4.1 Boundary states in conformal field theory

4.1.1 D-branes as boundary states and rational CFT

The description of D-branes used previously in this thesis has been mostly
from the space-time point of view. We have for the most part described Dp-
branes as solutions of supergravity corresponding to p-dimensional extended
objects carrying R–R charge, although they were derived as objects to which
open strings can end. From the string point of view, the branes should have
a description in terms of conformal field theory. The correct description is a
boundary state, which will be reviewed below.

There are special conformal field theories which are exactly solvable,
known as rational CFTs. One such class of theories are the minimal models
with central charge c < 3 (we are here considering N = 2 supersymmetric
minimal models, for non-supersymmetric models the minimal models have
c < 1). The existence and exactness of such models goes back to Kac. In
N = 2 models with c < 3 there are only a finite number of allowed highest
weight states, and this simplifies the theory significantly. Tensor products
of minimal models such that the total CFT has c = 9 was studied by Gep-
ner [46] as an alternative to the compactification of the extra 6 dimensions
of superstring theory. From the CFT point of view, the constraint that the
total central charge (including ghost contributions) should be zero is satisfied
with this setup equally well as the nonlinear sigma model.

Combining the Gepner construction and the boundary state approach,
we are led to the spectrum of boundary states in a Gepner model, first
studied by Recknagel and Schomerus [47] and interpreted geometrically for
the case of the Quintic in [48]. In paper 3, we are studying an extension
to the original “Recknagel-Schomerus branes” by generalising the boundary

35
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conditions, the so-called “permutation branes” [49]. D-branes in Gepner
models have an interpretation in terms of an algebraic construction called
matrix factorisations [27]. We find that the permutation branes correspond
to the specific class of linear matrix factorisations.

4.1.2 Ishibashi states

Open strings may be described perturbatively by a two-dimensional confor-
mal field theory (CFT) on the upper half-plane, known as boundary CFT
(BCFT). The boundary conditions for σ = 0, π may be conformally trans-
formed into a boundary condition for z ∈ R, in term of a complex coordinate
z. One must require that there is no energy flows across the boundary, i.e.
across the real line. This gives the condition T (z) = T̄ (z̄) for z = z̄.

For an extended symmetry algebraW with an additional generatorW (z),
e.g., generating supersymmetry, the boundary condition may be more gen-
eral:

W (z) = Ω(W̄ )(z̄) z = z̄, (4.1)

where Ω is an automorphism of the algebra acting trivially on the energy
momentum tensor.

In the CFT, one way of implementing the boundary conditions is the
boundary state approach [50, 51, 52] (See e.g. [53] for a review). With the
conformal transformation (different from the one considered above) (τ, σ) 7→
(−σ, τ) the boundary in the “space” coordinate σ is mapped onto a boundary
in “time”, τ = 0, π. This is how the open-closed duality appears in CFT. A
one-loop diagram describing an open string stretching between two D-branes
is mapped onto a closed-string diagram where the string propagates from an
initial state to a final state, these states given by the original boundary
conditions at the two branes.

The boundary conditions in eq. (4.1) may be implemented in the bulk
CFT by including Ishibashi states |i〉〉Ω obeying the gluing conditions

(
Ln − L̄−n

)
|i〉〉Ω = 0, (4.2)

(
Wn − (−1)hW Ω(W̄−n)

)
|i〉〉Ω = 0. (4.3)

Such a state may be represented by the formal expression

|i〉〉Ω =

∞∑

N=0

|i,N〉 ⊗ VΩU |i,N〉 , (4.4)

where the sum is over an orthonormal base of energy eigenstates in the
Hilbert space associated with the highest weight state |i, 0〉. There is thus
an Ishibashi state for each highest weight state of the bulk theory. A general
“boundary state” may be created as a linear combination of Ishibashi states,

‖i〉〉 =
∑

j

Bi
j|j〉〉. (4.5)
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A true boundary state must generate a modular invariant partition func-
tion, which gives constraints on the coefficients B i

j . Cardy[54] found that a
boundary state may be created by coefficients of the modular S-matrix,

Bi
j =

Sij
S0j

. (4.6)

4.1.3 Boundary states in SCFT

For an N = 2 supersymmetric CFT the gluing conditions (4.1) applies to the
supersymmetry generators G± and the U(1) current J . The Ishibashi states
that preserve spacetime N = 1 supersymmetry may therefore be grouped
into Aθ-type and B-type states[47, 55], labelled after which of the boundary
conditions of section 1.6.1 they correspond to.

4.2 The Gepner construction

4.2.1 Compactification and CFT

Gepner [46] introduced a generalisation of the standard compactification of
the extra dimensions of string theory by replacing the 10−D free superfields
by an “internal CFT” having central charge 15 − 3

2D. The idea is that any
CFT with the correct central charge (such that c = 0 altogether), leads to
Weyl invariance, and thus may be used in place of the usual sigma model in
the internal sector. The construction Gepner used was a tensor product of so-
called minimal models, which are special “rational” CFTs which allow one to
calculate all correlation functions exactly, i.e., not using perturbation theory.
Although the construction itself is highly non-geometrical, it was found that
the Gepner models nevertheless admit an interpretation as a (very special)
point in the moduli space of a geometrical model.

4.2.2 Minimal models

A N = 2 minimal model is a superconformal field theory with central charge
c < 3. Such a model is particularly simple, since it has only a finite number
of highest weight states. The minimal models are characterised by an integer
k = 1, 2, . . ., and model k has central charge c = 3k

k+2 . A HWS in such a
model is characterised by three integers l,m, s such that

l = 0, 1, . . . , k s = 0, 1, 2, 3

m = 0, 1, . . . , 2k + 4 l +m+ s ∈ 2Z
(4.7)

The state (l,m, s) is identified with the state (k − l,m+ k + 2, s+ 2) (field
identification).
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4.2.3 Gepner product

A state in the Gepner model is a product of minimal model states subjected
to a GSO projection. The fermion number is related to the U(1) charge,
and the GSO projection amounts to keeping states with odd charge1 To
make the projection consistent, one must also introduce twisted states into
the partition function. This ensures that the partition function is modular
invariant.

A product of r minimal models has highest weight states labelled as

λ := (l1, . . . , lr) µ := (s0;m1, . . . ,mr; s1, . . . , sr), (4.8)

where s0 labels the spin of the “external” fermions corresponding to the flat
dimensions. In the Gepner construction, an additional projection must be
made onto states that are pure Neveu-Schwarz or pure Ramond states, i.e.,
all states in the product must be either NS or R. The total projection may
be formulated by introducing vectors β0, βj in “µ-space”, with products

2β0 · µ = −d
2

s0

2
−

r∑

j=1

sj
2

+

r∑

j=1

mj

kj + 2
, (4.9)

βj · µ = −d
2

s0

2
− sj

2
. (4.10)

Where we have left the dimension d of the external space arbitrary. Pro-
jections onto states with 2β0 · µ odd and βj · µ integer will implement the
Gepner projection.

4.2.4 Boundary states in Gepner models

Ishibashi states may be created in a Gepner Model by the same construction
as discussed in section 4.1.2. However, because of the Gepner projection, it is
not obvious that boundary states (with modular invariant partition function)
may be created simply by using the S-matrix as in eq. (4.6).

D-branes in Gepner models were first studied by Recknagel and Schome-
rus [47] who found that the boundary coefficients (up to normalisation) for
non-singular Gepner models are given by

Bλ,µ
α = (−1)s

2
0/2e−iπ(d/2)(s0S0/2)

r∏

j=1

sin
π(lj+1)(Lj+1)

kj+2

sin1/2 π(lj+1)
kj+2

eiπmjMj/(kj+2)e−iπsjSj/2,

(4.11)
where the labels Lj ,Mj , S0, Sj are labels in the same ranges as lj,mj , s0, sj
above.

1The projection may be realized as a simple current extension[56, 22]. This is a more
general procedure for constructing a modular invariant partition function, and will in this
case give the same results as the original “β-method” introduced by Gepner.
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4.3 Connection to geometry

4.3.1 The Gepner model and geometry

The Gepner construction has been shown to be more strongly connected
to ordinary Calabi-Yau compactification than one might guess from the
construction itself. A Gepner product of r = n + 2 minimal models ki,
i = 1, . . . , r with total central charge c =

∑r
i=1

3ki
ki+2 = 3n is in fact a special

“small radius” point in the parameter space of closed string theory compact-
ified on an n-dimensional Calabi-Yau space constructed as the zero locus of
the polynomial

W (x) =
∑

i

(xi)
ki+2 (4.12)

in the weighted projective space WPn+1
(w1,w2,...,wr)

, where wi = K
ki+2 and K is

the least common multiple of ki+2. These facts were first realized in [57, 58]
and later formalised in Witten’s construction of the linear sigma model [59]
interpolating between the “large radius” point in the parameter space, which
may be studied with ordinary algebraic geometry, and the Gepner point.

This correspondence is also valid for r = n + 1, where one may add a
“trivial” extra minimal model kr = 0 and use the same formalism as above.

A Gepner model may be interpreted as the IR fixed point of a N = 2
Landau-Ginzburg model [60] defined by a superspace action

S =

∫
d2zd4θK(Φ, Φ̄) +

(∫
d2zd2θW (Φ) + c.c.

)
, (4.13)

where K is an irrelevant kinetic term and the superpotential W is defined
by the same polynomial as in eq. (4.12) (See [61] for a review).

4.3.2 D-branes and algebraic geometry

By a proposal of Kontsevich, a (B-type) D-brane in a Landau-Ginzburg
model was in [27] interpreted in terms of a construction in algebraic geometry
known as a matrix factorisation of the superpotential W (x). This is a pair
of matrices (p0, p1) such that

p0p1 = p1p0 = W id, (4.14)

where id is the identity matrix. The correspondence has been further studied
in [62, 63, 64, 65, 66].

A D-brane in a LG model is described by defining the model on a mani-
fold with a boundary. The immediate problem with this description is that
this model is no longer BRST invariant. A B-type supersymmetry trans-
formation, which left the model with no boundary invariant, of the action
leaves a boundary term which may be written

δS =
i

2

∫
dx0

(
εη̄W̄ ′ + ε̄ηW ′

)
, (4.15)
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where ε, ε̄ are (Grassmann) parameters of the transformation and η, η̄ are
fermions of the theory. This is the Warner problem [67]. To solve the prob-
lem, one must introduce a boundary (super)field Π satisfying DΠ = E(Φ),
with a (boundary) action reading

SδΣ = −1

2

∫
dx0d2θΠ̄Π

∣∣∣
π

0
− i

2

∫
dx0dθΠJ(Φ)θ̄=0

∣∣∣
π

0
+ c.c.. (4.16)

The boundary potentials E and J are determined by the supersymmetry
transformation of eq. (4.16), which becomes

δSδΣ = − i
2

∫
dx0

(
εη̄(ĒJ̄)′ + ε̄η(EJ)′

)
, (4.17)

showing that by choosing them such that EJ = W , the Warner problem is
solved.

The realisation of Kontsevich, Kapustin and Li was that the above prob-
lem corresponds exactly to finding matrix factorisations of W . This is a
method found by Eisenbud [68] of describing an algebraic module, which
again leads to the construction of a sheaf. It is then natural to believe that
the construction in the LG model should lead to a D-brane corresponding in
some way to the sheaf defined in this way from algebraic geometry.

4.4 Modules and resolutions

In algebraic geometry, a matrix factorisation defines a sheaf on the manifold
X through the complex

· · · p1−→ P0
p0−→ P1

p1−→ P0 −→ P −→ 0, (4.18)

where P1, P0 are free R-modules and R is the coordinate ring of the manifold
X. A module P is defined by the above complex, which is a free resolution of
the module, and a sheaf P̃ is defined by sheafification of P . Many properties
of the sheaves may be obtained from this algebraic description. Some general
properties of modules and free resolutions will be reviewed below.

The definition of an R-module P , where R is a ring, is identical to that
of a k-vectorspace (where k is a field such as R or C), only with R replacing
the field k. The difference between a ring and a field is that there may be
elements f ∈ R which have no inverse. Thus, the equation fw = 0, with
0 6= f ∈ R and w ∈ P does not necessarily imply w = 0.

The simplest kind of module is the one most similar to an n-dimensional
vector space, the free module Rn. This is defined, in parallel to the vector
space Cn, by taking the direct sum of n copies of R. In terms of a basis
{ei}i=1,...,n, we may write Rn =

∑n
i=1Rei.
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In a general, finitely generated R-module P , there will be linear relations
between a minimal set of generators {ei}i=1,...,n, as a result of the non-
invertible elements of the coefficient ring R. These relations, say that there
are m of them, may be written

n∑

i=1

f
(j)
i ei = 0, j = 1, . . . ,m. (4.19)

The n×k-matrix p1 = (f
(j)
i )ij is called the presentation matrix of P . P may

now be written as a quotient P = Rn/image(p1). The matrix p1 thus fits in
an exact sequence

Rm
p1−→ Rn −→ P −→ 0. (4.20)

This is the first step of a free resolution of P . The image of p1, which is also a
R-module, may be considered to be generated by a basis for Rm, {e′i}i=1,...,m.
But there will in general be linear relations between the image of these basis
elements, caused by linear relations between the equations (4.19). These
relations generate the kernel of the map p1, which may be described by a
presentation matrix p2 fitting in the exact sequence as

Rk
p2−→ Rm

p1−→ Rn −→ P −→ 0. (4.21)

This process may be repeated again for the kernel of p2, and so on, yield-
ing a free resolution of the module P . For every finitely generated module
over C[x1, . . . , xn], one can find a finite free resolution, but for modules over
a more general ring, there are often no finite ones.

4.5 Permutation branes

4.5.1 Permutation gluing

In a tensor product CFT, such as the Gepner construction, there is a natural
family of non-trivial choices for the gluing automorphism Ω of the symmetry
algebra W in eq. (4.1): For a tensor product of n equal factors, choose a
permutation π ∈ Sn and let the gluing automorphism act as

Ωπ : W [k](z) 7→W [π(k)](z) (4.22)

on a W-generator W [k](z) := 1⊗ · · · ⊗W (z)⊗ · · · ⊗ 1 with W (z) in the kth
factor, for k = 1, . . . , n. The Ishibashi states in eq. (4.4) now become

|i〉〉π =
∑

{N}
|i1, N1〉⊗· · ·⊗|in, Nn〉⊗U

∣∣iπ−1(1), Nπ−1(1)

〉
⊗· · ·⊗

∣∣iπ−1(n), Nπ−1(n)

〉
,

(4.23)
where the sum is over the Hilbert space energy eigenstates of each individual
factor.
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Such permutation gluing conditions were introduced in [49] for a Gepner
model, and the corresponding boundary states for the Quintic were worked
out explicitly. In paper 3, we use a more general approach for calculating the
boundary states and find the boundary coefficients for permutation branes
in general.

The calculation is based on the fact that to obtain fractional branes
(under the orbifold action of the Gepner projection) one must start with a
boundary state which is invariant under the orbifold group. To obtain such
a state, one must add together all boundary states obtained by twisting
with the elements of the group. There is a standard expression for the
coefficients of such twisted boundary states [69] which we adapt to the case
of permutation gluing conditions.

4.5.2 Permutation branes and algebraic geometry

In paper 3, we propose that permutation branes are related to a special class
of matrix factorisations called linear in [70]. The proposal is based on cal-
culation of open string spectra in CFT and calculation of the corresponding
algebraic structures, the Ext-groups.

In general, a D-brane corresponding to a matrix factorisation (p0, p1)
may be represented with a Z2-graded complex

P1

p1

�
p0

P0. (4.24)

Massless open string states between the D-branes are identified as maps
between such complexes [64], which may be grouped into bosonic maps Pi →
Pi with degree 0 and fermionic maps Pi → P1−i with degree 1. The maps
corresponding to states in the topological field theory again form a Z2 graded
complex

Hom(P,Q) =
⊕

i,j=0,1

Hom(Pi, Qj), (4.25)

with grading given by (i+ j) mod 2. The differential of the complex is the
BRST operator D, acting on a homogeneous element of degree k as

DΦ = (q1 ⊕ q0) ◦ Φ− (−1)kΦ ◦ (p1 ⊕ p0), (4.26)

where k is the degree of the map Φ. The operator D represents the BRST
operator in the CFT. The cohomology of the complex of maps correspond
to the Ext-groups of the modules defined by coker p1 and coker q1.

Calculating the cohomology of the above complex (4.25) for the linear
matrix factorisations, we can compare it to the corresponding spectrum of
chiral primary states in the BCFT. In particular, we may compare theWitten
index (or intersection form), which is equivalent to the Euler number in
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geometry,

〈〈αP ‖(−1)F ‖αQ〉〉 = χ(P,Q) = dimH0Hom(P,Q)− dimH1Hom(P,Q),
(4.27)

where the boundary states ‖αP,Q〉〉 correspond to the complexes P and Q.
Unfortunately, we are not able to prove the correspondence rigorously,

and must resort to circumstantial evidence for our claim. Mainly, this is in
the form of Ext-groups of the modules calculated with the help of the com-
puter algebra program Macaulay2 [71]. Macaulay2 does exact calculations
for explicit examples, and we have created code, included in the appendix of
the paper, which produces the rings and modules for a number of the linear
matrix factorisations. As far as we have been able to check, the correspon-
dence holds, however, it would be of great interest to find a rigorous proof
for this relation. Such a proof would likely be enlightening for the general
correspondence between matrix factorisations in algebraic geometry and in
Landau-Ginzburg models as well.
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Appendix A

Mathematical Concepts

A.1 Complex and algebraic geometry

In this appendix we have gathered some definitions and theorems from topol-
ogy, algebra, and geometry which are used in the text. The appendix is
intended as a reference only, for an introduction to the subjects we refer to
[72, 73, 74, 75].

A.1.1 Manifolds and varieties

An n-dimensional differentiable manifold M is a smooth space locally home-
omorphic to Rn. More formally, such a manifold may be covered with open
patches Ui and there is a homeomorphism φi from each of the Ui to an
open subset of Rn. There now exists a map between overlapping coordinate
patches ψij = φiφ

−1
j , and we require this map to be infinitely differentiable.

The homeomorphisms give local coordinate systems on the manifold.
In the case where n is even, it may be possible to use complex coor-

dinates on the manifold instead of real coordinates. The is useful if the
manifold allows a complex structure, which means that one can define the
local homeomorphisms φi such that the transition functions ψij are holo-
morphic functions. A manifold may allow several non-equivalent complex
structures. Between two complex manifolds one may also be able to define a
holomorphic map, which is a map f : M →M ′ such that the corresponding
maps between open subsets of Cn,Cm (where n is the dimension of M and
m that of M ′) are holomorphic.

Projective spaces are the basis of most algebraic geometry. They are
studied, in place of the affine spaces Cn, because they are compact, and thus
easier to work with. There are several equivalent definitions of a projective
space. One of them is the following: In Cn+1 \ {(0, . . . , 0)}, identify points
that differ in a common (complex) factor, i.e.

(x0, x1, . . . , xn) ≡ (λx0, λx1, . . . , λxn), λ ∈ C \ {0}. (A.1)

45
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This identification lowers the number of dimensions of the space by one. The
numbers (x0, x1, . . . , xn) are called homogeneous coordinates on the projec-
tive space Pn. It is customary to number the homogeneous coordinates from
0 to n as here. Note that the number of homogeneous coordinates is one
more than the number of dimensions.

Equivalent definitions would be to define Pn as the space of lines through
the origin of Cn+1, or as the unit sphere in Cn+1 with points differing in a
common phase λ = eiφ identified.

In the region of Pn where one selected coordinate xi is non-zero, one may
also define affine coordinates

(ξ1, . . . , ξn) = (
x0

xi
, . . . ,

xi−1

xi
,
xi+1

xi
, . . . ,

xn
xi

). (A.2)

The solution set of polynomial equations in Cn or Pn (in the latter case,
such equations must be homogeneous in the homogeneous coordinates xi)
may be a (complex) manifold. More generally, such solution sets are defined
as varieties in the subject of algebraic geometry. A variety may contain
singularities. A projective variety defined by a set of equations fi is denoted

V (f1, . . . , fN ) = {(a0, . . . , an) ∈ Pn |
f1(a0, . . . , an) = · · · = fN (a0, . . . , an) = 0} (A.3)

where f1, . . . , fN are homogeneous polynomials in {x0, . . . , xn}. One may
also define affine varieties by replacing Pn with Cn.

A.1.2 Algebra and geometry

A ring is a set of objects which allow operations of addition and multiplica-
tion in a “natural way”, i.e., the set is an Abelian group under addition, and
multiplication is associative and distributive. Obviously, the sets Z, R and
C are rings. R and C are also fields where the operation of multiplication
also gives an Abelian group structure for all nonzero elements.

An important class of rings are the polynomial rings C[x1, . . . , xn]. These
are the sets of polynomial functions in n variables. They are easily verified
to satisfy the conditions for a ring. An ideal of a ring is a subring I ⊂ R
such that fg and gf are in I for all f ∈ I and g ∈ R. For a polynomial
ring, an ideal is always finitely generated by a set of functions (f1, . . . , fm),
i.e., all g ∈ I may be written g = gifi for some gi ∈ R. There is therefore a
natural correspondence between an ideal and the variety V (f1, . . . , fm).

An R-module M , where R is a ring, is an Abelian group with an ad-
ditional “natural” operation of multiplication with elements in R, i.e., such
that for all f, g ∈ R,α, β ∈M , the relations fα ∈ M , f(α+ β) = fα+ fβ,
(f + g)α = fα+ gα, and (fg)α = f(gα) hold. A module becomes a vector
space if R is a field. Modules, however, are more general and may contain
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elements α such that fα = 0 with f, α 6= 0. An ideal of a ring is also a
module.

A finitely generated module is a module which may be written M =∑
iRαi for a set (αi) ⊂ M . A free R-module is a direct sum M = Rn =⊕n
i=1R. Any finitely generated module may be written with an exact se-

quence called a presentation

Rn
p→ Rm →M → 0, (A.4)

where the map p may be written as a matrix called the presentation matrix.
This matrix encodes the relations between the generators of the module.
The exact sequence above may be extended to the left by a free module
mapping out the kernel of the matrix p. This process may be repeated,
possibly indefinitely, or until the leftmost map has no kernel. The result is
a free resolution,

· · · → F2 → F1 → F0 →M → 0, (A.5)

where the Fi are all free modules.

A.2 Bundles and sheaves

Loosely, a fibre bundle E is a manifold that locally “looks like” a topological
product of two manifolds. One of the factors in this “product” is the base
space M , and the other is the fibre F . There is a projection π : E → M
such that π−1(p) ∼= F for all points p ∈M . If the fibre has the structure of
a vector space, the space E is called a vector bundle.

If bundles really always were product spaces, they would not be partic-
ularly interesting. The interesting structure to study is in some sense how
much a bundle is different from a product space. The case where E is a
product of the fibre and the base is called a trivial bundle. Topological in-
formation about the “amount of difference” between a bundle and the trivial
bundle is contained in characteristic classes of the bundle.

The condition that a bundle should be locally similar to a product is for-
malised in the existence of local diffeomorphisms (called local trivialisations)
from the bundle to U × F , where U is an open subset of the base M . An
open covering (a set {Ui} of open subsets covering the whole space M) with
diffeomorphisms φi : Ui × F → π−1(Ui) such that πφi(p, f) = p is called an
atlas. The important thing about the atlas is the way any two different maps
“connect” in an area where they are both defined. This information is coded
in transition functions between the maps defined for intersecting subsets.

Where two of the open sets in the covering overlap, Ui ∩ Uj 6=, the
function tij = φ−1

i φj is a smooth function tij : F → F . These functions are
the transition functions. As mentioned above, these functions code all the
interesting non-trivial data about the bundle. The tij may be constrained
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to belong to a group, the structure group of the bundle. If the bundle is
a vector bundle (of finite rank), so that F ∼= Rr, the structure group is a
subgroup of GL(r).

IfE andM are complex manifolds and the fibre is a complex vector space,
E may be a holomorphic vector bundle. The condition for this is that the
structure group is GL(k,C) and the transition functions are holomorphic.

A section of a bundle E with base space M is a map s : M → E such
that πs is the identity map. For a subset U ∈M we can define a local section
s : π−1(U)→ U .

A sheaf F may in some sense be associated with a generalisation of a
vector bundle. While a vector bundle has a fibre, which is a vector space,
over each point in the base space, a sheaf defines a group F(U) (possibly a
vector space) for each open subset U of the base space1. The group F(U)
is called the sections of F over U . In addition, a sheaf defines a map rU,V :
F(U)→ F(V ) for all open subsets V ⊂ U called the restriction map, which
must satisfy

1. For any sequence U ⊂ V ⊂W of open sets,

rW,U = rV,U ◦ rW,V . (A.6)

2. For any pair of open sets U, V ⊂ X and sections σ ∈ F(U), τ ∈ F(V )
such that σ|U∩V = τ |U∩V there exists a section ρ ∈ F(U ∪ V ) with
ρ|U = σ and ρ|V = τ .

3. If σ ∈ F(U ∪ V ) and σ|U = σ|V = 0, then σ = 0.

To make the connection to vector bundles, we define the sheaf O(E) for a
holomorphic vector bundle by letting O(E)(U) be the group of holomorphic
sections of E over U . Other important sheaves on a topological space X are
OX , the sheaf of holomorphic functions on (open subsets of) X, and Ωp

X ,
the sheaf of holomorphic p-forms on X.

A sheaf is called locally free if it is locally isomorphic to OrX . It turns
out that the category of locally free sheaves is equivalent to the category of
vector bundles, in the sense that all locally free sheaves are isomorphic to
O(E) for a vector bundle E.

1It is also possible to define a sheaf by its properties at each point of the base space,
making the definition more similar to that of a vector space. See e.g. [76].
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