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1 Introduction

Near the beginning of this century, there were two major break-throughs in
physics: The general theory of relativity (GR) and the theory of quantum
mechanics (QM). The theory of Relativity, which is usually regarded as the
work of one man, Albert Einstein, describes the motion of the planets, galax-
ies and indeed the evolution of the whole universe as well as we are currently
able to measure. Unlike relativity, which has remain unchanged since 1916,
QM has been refined by a great number of physicists throughout the century,
and the theories of Quantum Electrodynamics (QED) and Quantum Chro-
modynamics (QCD) now describe with an incredible precision the motion of
sub-atomic particles. It is ironic that while these theories were discovered
at roughly the same time, and while both are extremely accurate in each of
these fields, they seem almost impossible to combine into one single theory,
and nobody has yet come up with a satisfactory description of the laws of
nature that is able to predict both the motion of large scale and small scale
objects at the same time.

One of the places where this problem manifests itself is with the problem
of the cosmological constant. The cosmological constant was introduced by
Einstein into GR in order to create a solution of the equations of GR which
described a static universe. At the moment there was no evidence of any
large scale movement in the universe, and a static solution seemed to be a
necessary condition for any equation to correctly describe the universe. In
Einstein’s words, “The most important fact that we draw from experience
is that the relative velocities of the stars are very small as compared with
the velocity of light.”[1] In addition, the introduction of the cosmological
constant ensured that an empty universe satisfied Mach’s principle[2]. With
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a cosmological constant λ, Einstein’s field equations are

Rµν − 1

2
gµν − λgµν = −8πGT µν . (1)

When the red shift of distant galaxies was observed by Slipher in the
period 1910–1924, it was realized that this condition was not necessary any-
more, and it seemed natural to take the constant out of the equations again.
Einstein later described the cosmological constant as his biggest blunder.
However, the fact that the universe is expanding rather that static is natu-
rally not a proof that the cosmological constant is exactly zero, only that it
is significantly smaller than expected by Einstein.

In later years, there seem to be a significant number of observations,
most recently studies of type Ia supernovae[3, 4], indicating a non-zero cos-
mological constant. Since the cosmological constant does not seem to be
“required” from a theoretical point of view, many physicists do not like the
idea of putting it into Einstein’s equations “by hand.” The question we will
consider in this essay, is whether quantum physics will ever be able to predict
the value of the cosmological constant.

All equations in this essay use the convention h̄ = c = 1.

2 The Vacuum Energy Problem

At first, quantum field theory (QFT) looks promising regarding this question.
In quantum field theory, the zero point energy of the fields apparently gives a
non-zero energy for vacuum. Since vacuum is Lorentz invariant, this energy
fulfills

T µν = −ρV gµν , (2)

and therefore the vacuum energy appears in Einstein’s field equations as an
effective cosmological constant,

Rµν − 1

2
gµν = −8πGT µν = −8πG(T µνeff − ρV gµν), (3)

which may be transformed into equation (1) by letting λ = 8πGρV . Thus,
even if we do not include a cosmological constant by hand into the equations,
we arrive at a non-zero cosmological constant that might explain the observed
one.

Unfortunately, is isn’t quite this easy. First of all, the vacuum energy
formally diverges. The zero point energy of a quantum harmonic oscillator
is 1

2
h̄ω. For a quantum field, ω =

√
k2 +m2, where k is the wave vector.

Integrated over all possible wave vectors, this diverges catastrophically! This
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is normally not considered a problem in quantum field theory, since the en-
ergy of vacuum is assumed not to be detectable in any experiment—what
you measure is the energy difference of a given state and the vacuum. How-
ever, since the energy of vacuum gives, as we have seen, a contribution to the
cosmological constant, the result seems catastrophic. Quantum field theory
appears to predict an infinite cosmological constant.

It turns out that the divergence in the vacuum energy is not the only
infinity that appears in quantum field theory. All amplitudes one tries to
calculate to a higher order diverges. Fortunately, quantum field theorists
have found a way to circumvent these infinities. The process used is known
as renormalization. With this process, it is possible to “isolate” the infinities
and by relating certain amplitudes, or probabilities, to actual experimental
results, one may substitute finite values for the infinite term. Renormal-
ization is not a topic for this essay, but the concept of renormalization is
important because it has resulted in a new interpretation of the standard
model. The simplest form of renormalization is simply to replace the upper
limit on the integral for the vacuum energy with a constant Λ:

ρV =
∫ Λ

0

4πk2dk

2(2π)3

√
k2 +m2. (4)

This immediately leads to a finite result. This Λ was at first considered to
be a mathematical peculiarity which should be removed by taking the limit
Λ→∞ after all the calculations were done. Since amplitudes (probabilities)
for physical processes did not in fact diverge in this limit, this seemed to
solve the problem of infinities. However, in recent years the upper limit has
been interpreted as an upper limit to the Standard Model itself. For energies
above the energy level Λ, one needs to introduce new physics. This physics
is unknown to us, and it gives negligible contribution at energy levels much
smaller than Λ, but it is reasonable to believe that at some point, new physics
needs to be introduced.

This seems to provide a new way to solve the problem of the cosmological
constant. Λ would be assumed to have a value such that the integral (4)
corresponds to the observed cosmological constant. Of course, we could still
have a bare cosmological constant in addition to the “dynamical” vacuum
energy. The total cosmological term in Einstein’s field equations would then
include an e�ective cosmological constant λeff = λ+ 8πGρV , where ρV is the
vacuum energy.

Unfortunately, we know that the standard model is correct at least up to
the energy levels of current particle physics experiments, or about 200 GeV.
With this (very low) value for Λ, the vacuum energy becomes approximately,
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by equation (4),

ρV ≈
Λ4

16π2
≈ 107GeV. (5)

The current observational evidence suggests a cosmological constant of the
order of λ ≈ 10−29g/cm3, which corresponds to ρV ≈ 10−47GeV. We find
a mismatch of the theoretical and experimental values of the cosmological
constant of about 54 orders of magnitude! Even worse, if we choose to
believe that the Standard Model is correct all the way up to the Planck Scale,
Λ ≈ (8πG)

1
2 , where relativistic effects are believed to become important, the

mismatch grows to 120 orders of magnitude.
One possible solution to this inconsistency would be to include, by hand,

a bare cosmological constant into the Lagrangian. This constant would then
have to cancel the effect of the vacuum energy with an accuracy of at least
50 decimal places. Such a cancellation does not seem to be a very likely
accident!

3 Symmetries

One way of making the cosmological constant smaller than expected from
current theory, is an unknown symmetry that forces the vacuum energy to
be small. Such results of symmetries are well known in QFT, one example is
the small mass of the π-mesons, which comes from the approximate symmetry
between up and down quarks. There are several possible symmetries that
may force the cosmological constant to be close to zero, three of which we
shall present below.

3.1 Supersymmetry

The most studied variant is supersymmetry. Supersymmetry is an extension
to the standard model that, in very few words, identifies fermions and bosons
as the same type of particles. We can not go into details of the supersymmetry
mechanism in this essay, but the formalism includes a set of supersymmetry
generators {Qα}, where α = 1, 2. These operators are formed by combining
creation and annihilation operators for fermions and bosons. Since they are
generators for supersymmetry, a supersymmetric vacuum state must satisfy

Qα |0〉 = Q†α |0〉 = 0. (6)

Another result of the supersymmetry formalism is that the energy-momentum
operator P µ has a very simple form:

(σµ)αβP
µ = {Qα, Q

†
β}. (7)
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This implies that the expectation value of the vacuum energy 〈0|P 0 |0〉 must
be identical to zero.

If this was the whole truth, and since observations seem to indicate that
the cosmological constant has a small non-zero value, the observed cosmo-
logical constant must come from the bare cosmological constant, which must
be introduced as a parameter into the theory that can not be deduced from
any first principles.

But it is not this simple. We know for sure that supersymmetry is not
an observed symmetry of nature. If we still chose to believe that supersym-
metry is a fundamental symmetry, we must conclude that supersymmetry is
spontaneously broken, i.e. that the vacuum of the real world is not supersym-
metric. In that case, equation (6) no longer holds, and the vacuum energy is
no longer identical to zero.

As optimists, we might expect that the breaking of supersymmetry would
then give a value for the vacuum energy that agrees with the observed value.
The breaking of supersymmetry introduces a mass difference between pairs of
fermions and bosons that belong to the same multiplet in the supersymmetric
theory. Since we have not seen any “supersymmetric partners” of any of the
known elementary particles, their mass must be greater than the current
observational bound, which is about 200 GeV. The energy of the vacuum in
the broken theory would be expected to be of the same order of magnitude
as this mass difference, so again we end up with a result that contradicts
observation with at least 50 orders of magnitude.

3.2 Scale Invariance

At the classical level, the Standard Model can be formulated scale invariant-
ly[5], since it contains only dimensionless coupling constants. However, when
quantum corrections are introduced, the scale invariance vanishes. If we
were able to keep the scale invariance, both the vacuum energy and the bare
cosmological constant Λ would have to disappear.

The main problem is again, as with supersymmetry, that we know that
the world is not scale invariant. We have very strong experimental results
backing the scale dependence in the quantum field theory of the Standard
Model. Thus, the scale invariance would somehow need to be broken.

Stephen Adler[6] has proposed a new kinematic framework called Gen-
eralized Quantum Dynamics (GQD) to solve the problems relating to com-
bining a fundamental scale invariance with the observed non-invariance. We
are not able to discuss the full implementations of this framework, but the
major result is that the vacuum energy exactly vanishes on the QFT level if
the underlying GQD theory is scale invariant. It is not clear whether it is
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possible to obtain a bare cosmological constant from these principles.

3.3 Weyl Symmetry

The Weyl transformation is a conformal transformation where the quan-
tum fields are transformed as under a scale transformation. Joan Solà[5]
has proposed to extend the Standard Model with a local Weyl symmetry,
by introducing new gauge bosons. This leads to a dynamical cosmological
“constant”, which has a zero expectation value.

Solà’s construction does not need or include a Higgs particle, so this could
be a candidate theory if there continues to be no experimental evidence
for a Higgs particle. However, Weinberg[1] argues that any such theory
introducing new fields to “adjust” the vacuum energy will give too many
conditions on the fields, so that no solution can be found without fine tuning
the parameters. This is not a very nice situation, and Solà does not seem to
have developed his theories further recently.

4 Quintessence

The term “Quintessence” is used generically for various exotic effects that
may have a contribution to the energy density in the universe similar to
that of a cosmological constant. Quintessence is defined to have an equation
of state different from known matter (baryons, leptons, radiation and dark
matter)[7]. One example of Quintessence might be the new gauge bosons
from section 3.3. Another might be macroscopic objects like cosmic strings[7].

There are of course enormous possibilities for introducing new physics
that might have such an effect, and since the new type of matter is generally
assumed to interact very weakly with ordinary matter (to explain why it
has not been detected in experiments), it seems somewhat presumptuous to
assume the existence of any particular kind of such matter. Nevertheless,
some general models have been studied.

One such model is the so called “tracker fields”[8], which are a form
of Quintessence assumed to be slowly evolving by “rolling down” a poten-
tial. This model has been introduced to explain the “cosmic coincidence”
problem—why should the energy density of Quintessence be so close to the
energy density of matter in today’s universe?

The “tracker field” Q is assumed to satisfy an equation of motion,

Q̈+ 3HQ̇+ V ′(Q) = 0, (8)
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where H is the Hubble parameter, and for certain potentials V (Q), this
equation allows solutions where the cosmological “constant”, which will now
be a function of Q, ends up with a value near the density of matter more or
less independently of the initial conditions.

There still remains interpretational problems with this method, and it is
not clear how it withstands Weinberg’s arguments presented in the previous
section.

5 Quantum Cosmology and the

Anthropic Principle

By applying the concepts of quantum mechanics to the whole universe, the
Cosmological Constant could become a dynamical quantity which would not
be exactly determined. In this picture, there would be a distribution of values
for Λ. Hawking[9] and Coleman[10] have shown that in such a theory, the
distribution will have a sharp peak at Λ = 0. If this is a correct picture, it
might seem disturbing that current observations show that the Cosmological
Constant does not seem to be exactly zero. Furthermore, a quantum theory
of the whole universe leads to a rather overwhelming interpretation problem.

Another proposed solution to the Cosmological Constant problem is the
“Anthropic Principle”, summarized by Weinberg[1]. This view considers the
likeliness of existence of observers to be a criteria for the possible values
taken by the Cosmological Constant and other fundamental constants. The
argument is that these constants must take values such that planets can form
and life establish itself, or else nobody would be here to measure them. In
one way, this view may be connected to the Quantum Cosmology theory
by interpreting the probability distribution for the universe as the actual
existence of an infinite number of “sub-universes”, each with a different value
for Λ.

Weinberg shows that the Anthropic Principle indeed gives a range of
values for the vacuum energy density in the universe near the mass density
of matter. He also argues that since the mass density for matter changes with
time, the Anthropic Principle might be the only adequate explanation of why
the vacuum energy density should be close to the matter energy density.

However, it seems that such an explanation for the value of the Cosmo-
logical Constant (and other constants) is a kind of a defeat for physics. It
would be satisfactory to explain the problem by finding a more fundamental
physical theory rather than resorting to anthropic principles.
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6 Conclusion

The problem of the Cosmological Constant and Quantum Field Theory is
one of the great unsolved problems in modern physics. For that reason,
there have been many proposals for solutions, none of which have so far
proved conclusive. It has not been possible in this essay to give more than a
brief summary of some of the attempts. More thorough discussions may be
found in the reviews by Weinberg[1] and by Carroll and Press[11].

The Anthropic Principle seems to indicate that the range of values allowed
for a cosmological constant in a universe where observers can exists are not
very large. However, it would still be satisfactory to find a “first principle”
predicting the value of λ. At the moment the search continues, since none of
the methods presented in this essay have yet proved conclusive.

One important point to make is the strong relation between the more
general problem of combining Quantum Field Theory with General Relativity
and the problem of the Cosmological Constant. It is impossible to solve the
latter problem completely before one has found a satisfactory solution to the
former. Therefore, it might be too early to try to solve the Cosmological
Constant problem at the moment. On the other hand, if one is able to solve
the problem of the Cosmological Constant, its solution might give a hint to
the solution of the QFT-GR combination problem.
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