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e Random network with strong current-based synapses display self-
sustained activity (SSA).

e Emergence due to concave response function.
e SSA is strongly fluctuating.

e Average lifetime of SSA depends on network parameters, in-
creases with synapse strength.

e Our stochastic model predicts lifetime from correlations between
neurons.

Balanced Random Network Model

Network model: Multi-population random network with fixed in-degrees (Brunel, 2000)

Populations E (excitatory): LIF neurons (see B), size Ng

| (inhibitory): LIF neurons (see B), size N,

X (external): Poisson point processes with rate nvg , size Ke(Ng + M)
Connectivity EE, IE: Random convergent Kg — 1, excitatory synapses

El, Il: Random convergent K, — 1, inhibitory synapses (see C)

EX, IX: Non-overlapping Kg — 1, excitatory synapses (see C)

Parameters Population sizes Ny, in-degrees K, = eN(g |y, connectivity €, relative
external drive n

Neuron model: Leaky integrate-and-fire (LIF) neuron (Lapicque, 1907; Tuckwell, 1988)

Spike emission Neuron k € [1,Ne + N fires at all times {¢; |Vi(¢;,) = 0, ji € N}
Subthreshold TaVi = —Vi+RI(t) ifVji: 1t ¢ (tj,,t;, + Trer] Total synaptic input current
dynamics L(t) =Y, X iu(—t;) (see C)

Reset + refractori- | Vi(t) = Vieset  if Vji 1 1 € (8,1, + Tref]
ness

Parameters Membrane time constant 7,,, membrane resistance R, spike threshold 6,
reset potential Vieset, refractory period 7

Synapse model: Static current synapse with a-function shaped PSC

Juets ‘te /% >0
PSC kernel it +d) =471 T°
else
fJ if synapse kl exists and is excitatory
Synaptic weights | Ji, = ¢ —gJ if synapse kI exists and is inhibitory
\0 else
Parameters Excitatory synaptic weight J, relative strength g of inhibition, synaptic time
constant 15, synaptic delay d
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Spike trains si(t) =X, 6(1—1;)

Population  aver-| v(r) = (si(t));
aged firing rate

Standard deviation | ¢ = <\/v(t)2— <V(f)>;2>
of average firing :
rate

Table 1: Description of the model and the spike-train analysis.

Self-sustained activity

SSA has been observed in networks of integrate-and-fire neurons
with current-based synapses (Gewaltig, 2009). The lifetime of the
activity increases sharply in a narrow band of parameter values.
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Figure 1: Dependence of the lifetime of SSA (color coded) on the
level g of inhibition and the synaptic weight J in a random network
of 100000 excitatory and 25000 inhibitory laF neurons with 1% con-
nectivity (simulation results).

Rate response function

Although the diffusion approximation is only valid in the weak
synapse limit, we assume that at least in some range of strong
synapses the approximation will still give quantitatively correct re-
sults. The stationary rate response function (Siegert, 1951) predicts
three stationary states, a quiet state Q, an intermediate (unstable)
state | and a state H with self-sustained activity for strong weights.
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Figure 2: Rate response (Av = vyt — Vin) from Siegert (1951) for-
mula.

Stability

Linear stability analysis (Brunel, 2000) shows that the stationary H
state is unstable in the strong synapse regime, where very high fre-
guency oscillations appear. In simulations, the SSA displays signifi-
cantly stronger fluctuations than externally driven activity.
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Figure 3: Network activity for A: externally driven weak synapses
(/ =0.1mV); B: self-sustained strong synapses (J/ = 1.0mV)
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We model the ultra-high frequency oscillations as stochastic fluc-
tuations in the rate. Assuming that the rate fluctuates around the
unstable H state with a Gaussian probability distribution, we calcu-
late the probability that the rate fluctuates into the basin of attraction
for the quiet Q state.

Py %(1 erf(x)), x=P=*

V20
where p and A are the rates of the H and | states and o is the
standard deviation of the fluctuations. The lifetime of the SSA is
inversely proportional to Py. ¢ depends on the correlations in the
network (Kriener et al., 2008), which in turn depend on the firing

rate (De la Rocha et al., 2007). For the present results, we have
assumed that the correlation transfer is proportional to the rate.
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Figure 4: Stochastic model of network dynamics. Solid line: re-
sponse function (see fig. 2). States Q,I,H have self-consistent rates.
Filled: probability distribution for fluctuating network rate.

Comparison of model and simulations
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Figure 5: Result of network simulation. Solid line: measured re-
sponse function. Filled: probability distribution for fluctuating net-
work rate.
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Figure 6: Model prediction for lifetime of SSA.

~ig. 6 shows the prediction from the model, to be compared to the
simulation results in fig. 1. Since the diffusion approximation is ex-
pected to break down at strong synaptic weights, the model can not
be expected to produce quantitatively correct results. The qualita-
tive features of the lifetime obtained from our simplified model are
however in agreement with the simulation results.
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